184 research outputs found

    A multimethodic approach for the characterization of manganiceladonite, a new member of the celadonite family from Cerchiara mine, Eastern Liguria, Italy

    Get PDF
    In the manganesiferous ores associated with the metacherts of the ophiolitic sequences at the Cerchiara mine, Eastern Liguria (Italy), a new Mn-bearing mineral belonging to the mica group has been recently found and characterized. High resolution transmission electron microscopy and electron diffraction tomography studies confirm that the mineral belongs to the mica group. Unit-cell parameters from the powder diffraction pattern are: a = 5.149(1), b = 8.915(1), c = 10.304(1) Å, β = 102.03(1)°, space group C2 or C2/m. On the basis of the electron paramagnetic resonance spectroscopic results, the Mn4+ content represents a very subordinate fraction of the total Mn, the remaining occurring as Mn3+. The Raman spectrum clearly indicates the presence of OH groups in the structure. Laser-ablation inductively-coupled-plasma mass-spectrometry measurements assess the presence of considerable amounts of Li. Assuming all Mn as Mn3+ and 22 negative charges, the empirical formula can be expressed as: (K0.83□0.17)(Mn3þ 1:14Mg0.80Li0.20Fe3þ 0:02)(Si3.89Al0.10)O10[(OH)1.92F0.08] with the sum of the octahedral cations indicating a ‘transitional’ character between a di- and a tri-octahedral structure. This formula corresponds ideally to the Mn3+ analogue of celadonite, thus expanding the range of solid solution in the celadonite family. The ideal end-member formula KMn3+MgSi4O10(OH)2 can be easily related to celadonite by the homovalent substitution VIMn3+ → VIFe3+. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, (IMA 2015-052)

    Differential Spatial Expression and Subcellular Localization of CtBP Family Members in Rodent Brain

    Get PDF
    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons

    Multi-omic features of oesophageal adenocarcinoma in patients treated with preoperative neoadjuvant therapy

    Get PDF
    Oesophageal adenocarcinoma is a poor prognosis cancer and the molecular features underpinning response to treatment remain unclear. We investigate whole genome, transcriptomic and methylation data from 115 oesophageal adenocarcinoma patients mostly from the DOCTOR phase II clinical trial (Australian New Zealand Clinical Trials Registry-ACTRN12609000665235), with exploratory analysis pre-specified in the study protocol of the trial. We report genomic features associated with poorer overall survival, such as the APOBEC mutational and RS3-like rearrangement signatures. We also show that positron emission tomography non-responders have more sub-clonal genomic copy number alterations. Transcriptomic analysis categorises patients into four immune clusters correlated with survival. The immune suppressed cluster is associated with worse survival, enriched with myeloid-derived cells, and an epithelial-mesenchymal transition signature. The immune hot cluster is associated with better survival, enriched with lymphocytes, myeloid-derived cells, and an immune signature including CCL5, CD8A, and NKG7. The immune clusters highlight patients who may respond to immunotherapy and thus may guide future clinical trials.Marjan M. Naeini, Felicity Newell, LaurenG. Aoude, Vanessa F. Bonazzi, Kalpana Patel, Guy Lampe, Lambros T. Koufariotis, Vanessa Lakis, Venkateswar Addala, Olga Kondrashova, Rebecca L. Johnston, Sowmya Sharma, Sandra Brosda, Oliver Holmes, Conrad Leonard, Scott Wood, Qinying Xu, Janine Thomas, Euan Walpole, G. Tao Mai, Stephen P. Ackland, Jarad Martin, Matthew Burge, Robert Finch, Christos S. Karapetis, Jenny Shannon, Louise Nott, Robert Bohmer, Kate Wilson, Elizabeth Barnes, John R. Zalcberg, B. Mark Smithers, John Simes, Timothy Price, Val Gebski, Katia Nones, David I. Watson, John V. Pearson, Andrew P. Barbour, Nicola Waddel

    Cross-Platform Array Screening Identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as Genes Frequently Silenced by Methylation in Melanoma

    Get PDF
    Epigenetic regulation of tumor suppressor genes (TSGs) has been shown to play a central role in melanomagenesis. By integrating gene expression and methylation array analysis we identified novel candidate genes frequently methylated in melanoma. We validated the methylation status of the most promising genes using highly sensitive Sequenom Epityper assays in a large panel of melanoma cell lines and resected melanomas, and compared the findings with those from cultured melanocytes. We found transcript levels of UCHL1, COL1A2, THBS1 and TNFRSF10D were inversely correlated with promoter methylation. For THBS1 and UCHL1 the effect of this methylation on expression was confirmed at the protein level. Identification of these candidate TSGs and future research designed to understand how their silencing is related to melanoma development will increase our understanding of the etiology of this cancer and may provide tools for its early diagnosis

    Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy

    Get PDF
    L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK− bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles

    Active zone proteins are dynamically associated with synaptic ribbons in rat pinealocytes

    Get PDF
    Synaptic ribbons (SRs) are prominent organelles that are abundant in the ribbon synapses of sensory neurons where they represent a specialization of the cytomatrix at the active zone (CAZ). SRs occur not only in neurons, but also in neuroendocrine pinealocytes where their function is still obscure. In this study, we report that pinealocyte SRs are associated with CAZ proteins such as Bassoon, Piccolo, CtBP1, Munc13–1, and the motorprotein KIF3A and, therefore, consist of a protein complex that resembles the ribbon complex of retinal and other sensory ribbon synapses. The pinealocyte ribbon complex is biochemically dynamic. Its protein composition changes in favor of Bassoon, Piccolo, and Munc13–1 at night and in favor of KIF3A during the day, whereas CtBP1 is equally present during the night and day. The diurnal dynamics of the ribbon complex persist under constant darkness and decrease after stimulus deprivation of the pineal gland by constant light. Our findings indicate that neuroendocrine pinealocytes possess a protein complex that resembles the CAZ of ribbon synapses in sensory organs and whose dynamics are under circadian regulation

    Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion

    Get PDF
    Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine
    • …
    corecore