3 research outputs found
Cytotoxic T cells and mycobacteria
How the immune system kills Mycobacterium tuberculosis is still a puzzle. the classical picture of killing due to phagocytosis by activated macrophages may be only partly correct. Based on recent evidence, we express here the view that cytotoxic T lymphocytes also make an important contribution and suggest that DNA vaccines might be a good way to enhance this. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.Univ São Paulo, Sch Med Ribeirao Preto, Dept Biochem & Immunol, BR-14049900 Ribeirao Preto, SP, BrazilUniv São Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Clin Anal Bromatol & Toxicol, BR-14049 Ribeirao Preto, SP, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol & Immunol, São Paulo, BrazilWeb of Scienc
Pathogenic Allodiploid Hybrids of Aspergillus Fungi
Interspecific hybridization substantially alters genotypes and phenotypes and can give rise to new lineages. Hybrid isolates that differ from their parental species in infection-relevant traits have been observed in several human-pathogenic yeasts and plant-pathogenic filamentous fungi but have yet to be found in human-pathogenic filamentous fungi. We discovered 6 clinical isolates from patients with aspergillosis originally identified as Aspergillus nidulans (section Nidulantes) that are actually allodiploid hybrids formed by the fusion of Aspergillus spinulosporus with an unknown close relative of Aspergillus quadrilineatus, both in section Nidulantes. Evolutionary genomic analyses revealed that these isolates belong to Aspergillus latus, an allodiploid hybrid species. Characterization of diverse infection-relevant traits further showed that A. latus hybrid isolates are genomically and phenotypically heterogeneous but also differ from A. nidulans, A. spinulosporus, and A. quadrilineatus. These results suggest that allodiploid hybridization contributes to the genomic and phenotypic diversity of filamentous fungal pathogens of humans.status: publishe
Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells
COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis