16 research outputs found

    Mechanical properties of composite scaffolds from poly(3-hydroxybutyrate) and sodium alginate

    No full text

    Controlled release profiles of dipyridamole from biodegradable microspheres on the base of poly(3-hydroxybutyrate).

    No full text

    Evaluation of eliciting activity of peptidil prolyl cys/trans isomerase from <em>Pseudonomas fluorescens</em> encapsulated in sodium alginate regarding plant resistance to viral and fungal pahogens

    No full text
    Use of chemical pesticides poses a threat for environment and human health, so green technologies of crop protection are of high demand. Some microbial proteins able to activate plant defense mechanisms and prevent the development of resistance in plant pathogens, may be good alternative to chemicals, but practical use of such elicitors is limited due to need to protect them against adverse environment prior their delivery to target receptors of plant cells. In this study we examined a possibility to encapsulate heat resistant FKBP-type peptidyl prolyl cis-trans isomerase (PPIase) from Pseudomonas fluorescens, which possesses a significant eliciting activity in relation to a range of plant pathogens, in sodium alginate microparticles and evaluated the stability of resulted complex under long-term UV irradiation and in the presence of proteinase K, as well as its eliciting activity in three different β€œplant-pathogen” models comparing to that of free PPIase. The obtained PPIase-containing microparticles consisted of 70% of sodium alginate, 20% of bovine serum albumin, and 10% of PPIase. In contrast to free PPIase, which lost its eliciting properties after 8-h UV treatment, encapsulated PPIase kept its eliciting ability unchanged; after being exposed to proteinase K, its eliciting ability twice exceeded that of free PPIase. Using β€œtobacco-TMV”, β€œtobacco-Alternaria longipes”, and β€œwheat-Stagonospora nodorum” model systems, we showed that encapsulation process did not influence on the eliciting activity of PPIase. In the case of the β€œwheat-S. nodorum” model system, we also observed a significant eliciting activity of alginate-albumin complex and almost doubled activity of encapsulated PPIase as compared to the free PPIase. As far as we know, this is the first observation of a synergistic interaction between alginate and other compound possessing any bioactive properties. The results of the study show some prospects for a PPIase use in agriculture

    Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ микроструктурированных ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΠΎΠ»ΠΈ-3-оксибутирата с Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ‚ΠΎΠΏΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ΠΉ повСрхности

    No full text
    The possibility of fabrication of microstructured poly-3-hydroxybutyrate films by self-assembly water microdroplets technique, using artificial templates and polymer inverse emulsions has been studied. It has been established that self-assembly water microdroplets technique allows forming ordered microstructures of poly-3-hydroxybutyrate with a hexagonal arrangement of cells with an adjustable diameter from 1 to 4 Ρ†Ρ‚. It has been shown that application of inverse emulsions of poly-3-hydroxybutyrate allows us to fabricate porous films with a pore size in the range from 0.4 to 3 ^m, while the structure of the films and the pore size can be controlled by changing the polymer concentration in the dispersion medium and the volume ratio of the phases. Using spin-coating technique and artificial templates, it is possible to obtain poly-3-hydroxybutyrate microstructured replicas, which are characterized by a high degree of uniformity and the absence of defective areas. It has been shown that the formed microstructured poly-3-hydroxybutyrate films with controlled surface topography are promising for use as scaffolds for stem cells.ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ формирования микроструктурированных ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΏΠΎΠ»ΠΈ-3-оксибутирата ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ «самоорганизации» ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°ΠΏΠ΅Π»ΡŒ Π²ΠΎΠ΄Ρ‹ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ искусствСнных шаблонов ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π°. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ «самоорганизации» ΠΌΠΎΠΆΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ упорядочСнныС микроструктуры ΠΏΠΎΠ»ΠΈ-3-оксибутирата с Π³Π΅ΠΊΡΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ располоТСниСм ячССк Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° ΠΎΡ‚ 1 Π΄ΠΎ 4 ΠΌΠΊΠΌ. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡƒΡ‚Π΅ΠΌ примСнСния ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Ρ… ΡΠΌΡƒΠ»ΡŒΡΠΈΠΉ ΠΏΠΎΠ»ΠΈ-3-оксибутирата ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ пористыС ΠΏΠ»Π΅Π½ΠΊΠΈ с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΏΠΎΡ€ ΠΎΡ‚ 0,4 Π΄ΠΎ 3 ΠΌΠΊΠΌ, ΠΏΡ€ΠΈ этом структуру ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€ ΠΏΠΎΡ€ Π² Π½ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡƒΡ‚Π΅ΠΌ измСнСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π° Π² диспСрсионной срСдС ΠΈ объСмного ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Ρ„Π°Π·. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° цСнтрифугирования ΠΈ примСнСния искусствСнных шаблонов ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Ρ€Π΅ΠΏΠ»ΠΈΠΊΠΈ ΠΏΠΎΠ»ΠΈ-3-оксибутирата, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ΡΡ высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ однородности ΠΏΠΎ всСй ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈ отсутствиСм Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Ρ… областСй. Показано, Ρ‡Ρ‚ΠΎ сформированныС микроструктурированныС ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΏΠΎΠ»ΠΈ-3-оксибутирата с Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ‚ΠΎΠΏΠΎΠ³Ρ€Π°Ρ„ΠΈΠ΅ΠΉ повСрхности пСрспСктивны для использования Π² качСствС скаффолдов для ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ
    corecore