9 research outputs found

    A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN

    Get PDF
    Staphylococcus aureus is a serious public health burden causing a wide variety of infections. Earlier detection of such infections could result in faster and more directed therapies that also prevent resistance development. Human monoclonal antibodies (humAbs) are promising tools for diagnosis and therapy owing to their relatively straightforward synthesis, long history of safe clinical use and high target specificity. Here we show that the humAb 6D4, which was obtained from a random screen of B-cells producing antibodies that bind to whole cells of S. aureus, targets the staphylococcal complement inhibitor (SCIN). The epitope recognized by 6D4 was localized to residues 26 to 36 in the N-terminus of SCIN, which overlap with the active site. Accordingly, 6D4 can inhibit SCIN activity as demonstrated through the analysis of C3b deposition on S. aureus cells and complement-induced lysis of rabbit erythrocytes. Importantly, while SCIN is generally regarded as a secreted virulence factor, 6D4 allowed detection of strongly increased SCIN binding to S. aureus cells upon exposure to human serum, relating to the known binding of SCIN to C3 convertases deposited on the staphylococcal cell surface. Lastly, we show that labeling of humAb 6D4 with a near-infrared fluorophore allows one-step detection of SCIN-producing S. aureus cells. Together, our findings show that the newly described humAb 6D4 specifically recognizes S. aureus SCIN, which can potentially be used for detection of human serum-incubated S. aureus strains expressing SCIN

    Metabolic flux analysis of hybridoma cells in different culture media using mass balances

    No full text
    The estn. of the intracellular fluxes of mammalian cells using only the mass balances of the relevant metabolites is not possible because the set of linear equations defined by these mass balances is undetd. Either addnl. exptl. flux data or addnl. theor. constraints are required to find 1 unique flux distribution out of the soln. space that is bound by the mass balances. Here, a method is developed using the latter approach. The uptake and prodn. rates of amino acids, glucose, lactate, O2, CO2, NH4, MAB, and the intracellular amino acid pools were detd. for 2 different steady states. The cellular compn. (total protein and protein compn., total lipids and fatty acid distribution, total carbohydrates, DNA, and RNA) was measured to calc. the requirements for biosynthesis. It was essential to det. the uptake/prodn. rates of NH3 and either CO2 or O2. In mammalian cells these are cometabolites of cyclic metabolic pathways. The flux distribution that is found using the Euclidean min. norm as the addnl. theor. constraint and taking either the CO2 or the NAD(P)H mass balance into account is shown to be in agreement with the measured O2 and CO2 metabolic rates. The metabolic fluxes in hybridoma cells in continuous culture at a sp. growth rate of 0.83/day are estd. for a medium with (optimal medium) and without (suboptimal medium) Primatone RL, an enzymic hydrolyzate of animal tissue that causes a >2-fold increase in cell d. It is concluded that (i) the majority of the consumed glucose (>90%) is channeled through the pentose phosphate pathway in rapidly proliferating cells. (Ii) Pyruvate oxidn. and tricarboxylic acid (TCA) cycle activity are relatively low, i.e., 8% of the glucose uptake in suboptimal and 14% in optimal medium, resp. Under both conditions, only a small fraction of pyruvate is further oxidized to CO2. (Iii) The flux from glutamate to alpha-ketoglutarate (catalyzed by glutamate dehydrogenase) is almost zero in medium with and even slightly reversed in medium without Primatone RL. Almost all glutamate enters the TCA cycle due to the action of transaminases. (Iv) Transhydrogenation played a significant role in hybridoma cells under these exptl. conditions. NADPH was produced at relatively high rates (11 * 10-12 to 13 * 10-12 mol/cell-day) compared to other fluxes in both culture media. [on SciFinder (R)

    DNA Array-Based Transcriptional Analysis of Asporogenous, Nonsolventogenic Clostridium acetobutylicum Strains SKO1 and M5

    No full text
    The large-scale transcriptional program of two Clostridium acetobutylicum strains (SKO1 and M5) relative to that of the parent strain (wild type [WT]) was examined by using DNA microarrays. Glass DNA arrays containing a selected set of 1,019 genes (including all 178 pSOL1 genes) covering more than 25% of the whole genome were designed, constructed, and validated for data reliability. Strain SKO1, with an inactivated spo0A gene, displays an asporogenous, filamentous, and largely deficient solventogenic phenotype. SKO1 displays downregulation of all solvent formation genes, sigF, and carbohydrate metabolism genes (similar to genes expressed as part of the stationary-phase response in Bacillus subtilis) but also several electron transport genes. A major cluster of genes upregulated in SKO1 includes abrB, the genes from the major chemotaxis and motility operons, and glycosylation genes. Strain M5 displays an asporogenous and nonsolventogenic phenotype due to loss of the megaplasmid pSOL1, which contains all genes necessary for solvent formation. Therefore, M5 displays downregulation of all pSOL1 genes expressed in the WT. Notable among other genes expressed more highly in WT than in M5 were sigF, several two-component histidine kinases, spo0A, cheA, cheC, many stress response genes, fts family genes, DNA topoisomerase genes, and central-carbon metabolism genes. Genes expressed more highly in M5 include electron transport genes (but different from those downregulated in SKO1) and several motility and chemotaxis genes. Most of these expression patterns were consistent with phenotypic characteristics. Several of these expression patterns are new or different from what is known in B. subtilis and can be used to test a number of functional-genomic hypotheses

    A human monoclonal antibody targeting the conserved staphylococcal antigen IsaA protects mice against Staphylococcus aureus bacteremia

    Get PDF
    Due to substantial therapy failure and the emergence of antibiotic-resistant Staphylococcus aureus strains, alternatives for antibiotic treatment of S. aureus infections are urgently needed. Passive immunization using S. aureus-specific monoclonal antibodies (mAb) could be such an alternative to prevent and treat severe S. aureus infections. The invariantly expressed immunodominant staphylococcal antigen A (IsaA) is a promising target for passive immunization. Here we report the development of the human anti-IsaA IgG1 mAb 1D9, which was shown to bind to all 26 S. aureus isolates tested. These included both methicillin-susceptible and methicillin-resistant S. aureus (MSSA and MRSA, respectively). Immune complexes consisting of IsaA and 1D9 stimulated human as well as murine neutrophils to generate an oxidative burst. In a murine bacteremia model, the prophylactic treatment with a single dose of 5 mg/kg 1D9 improved the survival of mice challenged with S. aureus isolate P (MSSA) significantly, while therapeutic treatment with the same dose did not influence animal survival. Neither prophylactic nor therapeutic treatment with 5 mg/kg 1D9 resulted in improved survival of mice with S. aureus USA300 (MRSA) bacteremia. Importantly, our studies show that healthy S. aureus carriers elicit an immune response which is sufficient to generate protective mAbs against invariant staphylococcal surface antigens. Human mAb 1D9, possibly conjugated to for example another antibody, antibiotics, cytokines or chemokines, may be valuable to fight S. aureus infections in patients

    Tryptic Shaving of Staphylococcus aureus Unveils Immunodominant Epitopes on the Bacterial Cell Surface

    Get PDF
    The opportunistic pathogen Staphylococcus aureus has become a major threat for human health and well-being by developing resistance to antibiotics and by fast evolution into new lineages that rapidly spread within the healthy human population. This calls for development of active or passive immunization strategies to prevent or treat acute phase infections. Since no such anti-staphylococcal immunization approaches are available for clinical implementation, the present studies were aimed at identifying new leads for their development. For this purpose, we profiled the cell-surface-exposed staphylococcal proteome under infection-mimicking conditions by combining two approaches for "bacterial shaving" with immobilized or soluble trypsin and subsequent mass spectrometry analysis of liberated peptides. In parallel, non-covalently cell-wall-bound proteins extracted with potassium thiocyanate and the exoproteome fraction were analyzed by gel-free proteomics. All data are available through ProteomeXchange accession PXD000156. To pinpoint immunodominant bacterial-surface-exposed epitopes, we screened selected cell-wall-attached proteins of S. aureus for binding of immunoglobulin G from patients who have been challenged by different types of S. aureus due to chronic wound colonization. The combined results of these analyses highlight particular cell-surface-exposed S. aureus proteins with highly immunogenic exposed epitopes as potential targets for development of protective anti-staphylococcal immunization strategies
    corecore