138 research outputs found

    Macroscopic brain architecture changes and white matter pathology in acromegaly: a clinicoradiological study

    Get PDF
    Although long-term exposure of the brain to increased GH/IGF-1 likely influences cerebral functions, no in vivo studies have been directed towards changes of the brain structure in acromegaly. Here, we used high resolution magnetic resonance images to compare volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of forty-four patients with acromegaly to an age and gender matched, healthy control group (n = 44). In addition, white matter lesions (WMLs) were quantified and graded. Patients exhibited larger GM (+3.7% compared with controls, P = 0.018) and WM volumes (+5.1%, P = 0.035) at the expense of CSF. Differences of WML counts between patients and controls were subtle, however, showing more patients in the 21–40 lesions category (P = 0.044). In conclusion, this MRI study provides first evidence that acromegalic patients exhibit disturbances of the macroscopic brain tissue architecture. Furthermore, acromegalic patients may have an increased risk of neurovascular pathology, likely due to secondary metabolic and vascular comorbidities

    Genetic Analysis of Short Children with Apparent Growth Hormone Insensitivity

    Get PDF
    BACKGROUND/AIMS: In short children, a low IGF-I and normal GH secretion may be associated with various monogenic causes, but their prevalence is unknown. We aimed at testing GH1, GHR, STAT5B, IGF1, and IGFALS in children with GH insensitivity. Subjects and METHODS: Patients were divided into three groups: group 1 (height SDS <-2.5, IGF-I <-2 SDS, n = 9), group 2 (height SDS -2.5 to -1.9, IGF-I <-2 SDS, n = 6) and group 3 (height SDS <-1.9, IGF-I -2 to 0 SDS, n = 21). An IGF-I generation test was performed in 11 patients. Genomic DNA was used for direct sequencing, multiplex ligation-dependent probe amplification and whole-genome SNP array analysis. RESULTS: Three patients in group 1 had two novel heterozygous STAT5B mutations, in two combined with novel IGFALS variants. In groups 2 and 3 the association between genetic variants and short stature was uncertain. The IGF-I generation test was not predictive for the growth response to GH treatment. CONCLUSION: In severely short children with IGF-I deficiency, genetic assessment is advised. Heterozygous STAT5B mutations, with or without heterozygous IGFALS defects, may be associated with GH insensitivity. In children with less severe short stature or IGF-I deficiency, functional variants are rare

    Electroweak parameters of the z0 resonance and the standard model

    Get PDF
    Contains fulltext : 124399.pdf (publisher's version ) (Open Access

    SEARCH FOR LIGHT NEUTRAL HIGGS PARTICLES PRODUCED IN Z0-DECAYS

    No full text

    A Study of the reaction e+ e- ---> mu+ mu- around the Z0 pole

    Get PDF
    Contains fulltext : 129369.pdf (publisher's version ) (Open Access
    corecore