32 research outputs found

    Two-photon polymerized "nichoid" substrates maintain function of pluripotent stem cells when expanded under feeder-free conditions

    Get PDF
    BACKGROUND: The use of pluripotent cells in stem cell therapy has major limitations, mainly related to the high costs and risks of exogenous conditioning and the use of feeder layers during cell expansion passages. METHODS: We developed an innovative three-dimensional culture substrate made of “nichoid” microstructures, nanoengineered via two-photon laser polymerization. The nichoids limit the dimension of the adhering embryoid bodies during expansion, by counteracting cell migration between adjacent units of the substrate by its microarchitecture. We expanded mouse embryonic stem cells on the nichoid for 2 weeks. We compared the expression of pluripotency and differentiation markers induced in cells with that induced by flat substrates and by a culture layer made of kidney-derived extracellular matrix. RESULTS: The nichoid was found to be the only substrate, among those tested, that maintained the expression of the OCT4 pluripotency marker switched on and, simultaneously, the expression of the differentiation markers GATA4 and α-SMA switched off. The nichoid promotes pluripotency maintenance of embryonic stem cells during expansion, in the absence of a feeder layer and exogenous conditioning factors, such as the leukocyte inhibitory factor. CONCLUSIONS: We hypothesized that the nichoid microstructures induce a genetic reprogramming of cells by controlling their cytoskeletal tension. Further studies are necessary to understand the exact mechanism by which the physical constraint provided by the nichoid architecture is responsible for cell reprogramming. The nichoid may help elucidate mechanisms of pluripotency maintenance, while potentially cutting the costs and risks of both feed-conditioning and exogenous conditioning for industrial-scale expansion of stem cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-016-0387-z) contains supplementary material, which is available to authorized users

    Engineering the vasculature of decellularized rat kidney scaffolds using human induced pluripotent stem cell-derived endothelial cells

    Get PDF
    Generating new kidneys using tissue engineering technologies is an innovative strategy for overcoming the shortage of donor organs for transplantation. Here we report how to efficiently engineer the kidney vasculature of decellularized rat kidney scaffolds by using human induced pluripotent stem cell (hiPSCs)-derived endothelial cells (hiPSC-ECs). In vitro, hiPSC-ECs responded to flow stress by acquiring an alignment orientation, and attached to and proliferated on the acellular kidney sections, maintaining their phenotype. The hiPSC-ECs were able to self-organize into chimeric kidney organoids to form vessel-like structures. Ex vivo infusion of hiPSC-ECs through the renal artery and vein of acellular kidneys resulted in the uniform distribution of the cells in all the vasculature compartments, from glomerular capillaries to peritubular capillaries and small vessels. Ultrastructural analysis of repopulated scaffolds through transmission and scanning electron microscopy demonstrated the presence of continuously distributed cells along the vessel wall, which was also confirmed by 3D reconstruction of z-stack images showing the continuity of endothelial cell coverage inside the vessels. Notably, the detection of fenestrae in the endothelium of glomerular capillaries but not in the vascular capillaries was clear evidence of site-specific endothelial cell specialisation

    Interstitial edema-rich areas in a solid tumor model: histochemical characterization.

    No full text
    corecore