18 research outputs found
A look to the inside of haloes: a characterisation of the halo shape as a function of overdensity in the Planck cosmology
In this paper we study the triaxial properties of dark matter haloes of a
wide range of masses extracted from a set of cosmological N-body simulations.
We measure the shape at different distances from the halo centre (characterised
by different overdensity thresholds), both in three and in two dimensions. We
discuss how halo triaxiality increases with mass, redshift and distance from
the halo centre. We also examine how the orientation of the different
ellipsoids are aligned with each other and what is the gradient in internal
shapes for halos with different virial configurations. Our findings highlight
that the internal part of the halo retains memory of the violent formation
process keeping the major axis oriented toward the preferential direction of
the in-falling material while the outer part becomes rounder due to continuous
isotropic merging events. This effect is clearly evident in high mass haloes -
which formed more recently - while it is more blurred in low mass haloes. We
present simple distributions that may be used as priors for various mass
reconstruction algorithms, operating in different wavelengths, in order to
recover a more complex and realistic dark matter distribution of isolated and
relaxed systems.Comment: accepted for publication by MNRAS (15 pag. and 14 fig.
Universality of dark matter haloes shape over six decades in mass: Insights from the Millennium XXL and SBARBINE simulations
For the last 30 years many observational and theoretical evidences have shown
that galaxy clusters are not spherical objects, and that their shape is much
better described by a triaxial geometry. With the advent of multi-wavelength
data of increasing quality, triaxial investigations of galaxy clusters is
gathering a growing interest from the community, especially in the time of
"precision cosmology". In this work, we aim to provide the first statistically
significant predictions in the unexplored mass range above 3x10^14 Mo/h, using
haloes from two redshifts (z=0 and z=1) of the Millennium XXL simulation. The
size of this cosmological dark matter only simulation (4.1 Gpc) allows the
formation of a statistically significant number of massive cluster scale haloes
(about 500 with M>2x10^15 Mo/h and 780000 with M>10^14 Mo/h). Besides, we aim
to extend this investigation to lower masses in order to look for universal
predictions across nearly six orders of magnitude in mass, from 10^10 to almost
10^16 Mo/h. For this purpose we use the SBARBINE simulations, allowing to model
haloes of masses starting from 10^10 Mo/h. We use an elliptical overdensity
method to select haloes and compute the shapes of the unimodal ones
(approximately 50%), while we discard the unrelaxed. The minor to major and
intermediate to major axis ratio are found to be well described by simple
functional forms. For a given mass we can fully characterize the shape of a
halo and give predictions about the distribution of axis ratios for a given
cosmology and redshift. Moreover, these results are in some disagreement with
the findings of Jing & Suto (2002) which are widely used in the community even
though they have to be extrapolated far beyond their original mass range. This
"recipe" is made available to the community in this paper and in a dedicated
web page.Comment: 13 pages, 16 figure
Amas de galaxies triaxiaux
Il est bien établit théoriquement et observationnellement que les amas de galaxies ne sont pas des objets sphèriques, et qu'ils sont beaucoup mieux décrits par la géométrie triaxiale. Malgré cela, les travaux sur la forme tri-dimensionnelle des amas de galaxies sont encore trés rares. L'objet de cette thèse est de contribuer à cette problématique naissante. L'originalité de ce travail est d'aborder ce sujet théoriquement et observationnellement. J'ai mesuré la forme d'amas de galaxies simulés, proposant des prédictions sur la forme des haloes de matière noire. J'ai ensuite développé un algorithme qui se propose de combiner des données en lentilles gravitationnelles et en rayons X afin de contraindre un modèle de haloe triaxial. L'algorithme est testé sur des données simulées. Finalement, je présente l'analyse en rayons X de Abell 1703, qui, combinée avec l'analyse en lentilles gravitationnelles, permettra de déterminer la forme de Abell 1703.It is well established both theoretically and observationally that galaxy clusters are not spherical objects and that they are much better approximated as triaxial objects. This thesis focusses on the three dimencional shape of galaxy clusters. The originality of my approach is to tackle the problem both theoretically and observationally. First, I have measured the shape of dark matter haloes in the Millenium XXL and Sbarbine simulations, providing predictions for dark matter halo shape over 5 order in magnitude in mass. Then, I have developed an algorithm aimed at fitting simultaneously lensing and X-ray data in order to constrain a triaxial mass distribution. The algorithm is tested and characterized on mock data sets. It is found to be able to recover the input parameters. Finally, I present the X-ray analysis of galaxy cluster Abell 1703, which will be combined with the existing lensing analysis in order to investigate its shape
Combined analysis of galaxy clusters: triaxiality and mass components
Galaxy Clusters Accros Cosmic Times : oral presentatio
Discovery and first models of the quadruply lensed quasar SDSS J1433+6007
We report the discovery of the quadruply lensed quasar J1433+6007, mined in
the SDSS DR12 photometric catalogues using a novel outlier-selection technique,
without prior spectroscopic or UV excess information. Discovery data obtained
at the Nordic Optical telescope (NOT, La Palma) show nearly identical quasar
spectra at and four quasar images in a fold configuration, one of
which sits on a blue arc. The deflector redshift is from
Keck-ESI spectra. We describe the selection procedure, discovery and follow-up,
image positions and magnitudes, and first results and forecasts from
simple lens models.Comment: MNRAS submitted, 5 pages, 3 figures. Based on observations at Nordic
Optical Telescope (La Palma) and Keck Telescope (Hawaii
Recommended from our members
Discovery and first models of the quadruply lensed quasar SDSS J1433+6007
We report the discovery of the quadruply lensed quasar J1433+6007, mined in
the SDSS DR12 photometric catalogues using a novel outlier-selection technique,
without prior spectroscopic or UV excess information. Discovery data obtained
at the Nordic Optical telescope (NOT, La Palma) show nearly identical quasar
spectra at and four quasar images in a fold configuration, one of
which sits on a blue arc. The deflector redshift is from
Keck-ESI spectra. We describe the selection procedure, discovery and follow-up,
image positions and magnitudes, and first results and forecasts from
simple lens models
Strong lensing cosmography in the frontier fields
The wealth of strong lensing features observed in the Frontier Fields clusters offers insights on the nature of dark energy. The large number of multiple-images systems with redshifts allows to simultaneously estimate the lens model parameters and the cosmological parameters involved in the distances calculations. In particular for the \u39bCDM model, it is possible to estimate the matter density \u3a9 m and the dark energy equations parameters w X. In this talk, I will present recent analyses of systematic errors based on Frontier Fields observed and simulated data
The mass dependence of dark matter halo alignments with large-scale structure
International audienceTidal gravitational forces can modify the shape of galaxies and clusters of galaxies, thus correlating their orientation with the surrounding matter density field. We study the dependence of this phenomenon, known as intrinsic alignment (IA), on the mass of the dark matter haloes that host these bright structures, analysing the Millennium and Millennium-XXL N-body simulations. We closely follow the observational approach, measuring the halo position–halo shape alignment and subsequently dividing out the dependence on halo bias. We derive a theoretical scaling of the IA amplitude with mass in a dark matter universe, and predict a power law with slope β_M in the range 1/3 to 1/2, depending on mass scale. We find that the simulation data agree with each other and with the theoretical prediction remarkably well over three orders of magnitude in mass, with the joint analysis yielding an estimate of . This result does not depend on redshift or on the details of the halo shape measurement. The analysis is repeated on observational data, obtaining a significantly higher value, . There are also small but significant deviations from our simple model in the simulation signals at both the high- and low-mass end. We discuss possible reasons for these discrepancies, and argue that they can be attributed to physical processes not captured in the model or in the dark matter-only simulations