108 research outputs found
Optical response of two-dimensional electron fluids beyond the Kohn regime: strong non-parabolic confinement and intense laser light
We investigate the linear and non-linear optical response of two-dimensional
(2D) interacting electron fluids confined by a strong non-parabolic potential.
We show that such fluids may exhibit higher-harmonic spectra under realistic
experimental conditions. Higher harmonics arise as the electrons explore
anharmonicities of the confinement potential (electron-electron interactions
reduce this non-linear effect). This opens the possibility of controlling the
optical functionality of such systems by engineering the confinement potential.
Our results were obtained within time-dependent density-functional theory,
employing the adiabatic local-density approximation. A classical hydrodynamical
model is in good agreement with the quantum-mechanical results.Comment: 4 pages, 4 figure
Theory of Fast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots
Optical techniques for the quantum control of the dynamics of multiexciton
states in a semiconductor quantum dot are explored in theory. Composite
bichromatic phase-locked pulses are shown to reduce the time of elementary
quantum operations on excitons and biexcitons by an order of magnitude or more.
Analytic and numerical methods of designing the pulse sequences are
investigated. Fidelity of the operation is used to gauge its quality. A
modified Quantum Fourier Transform algorithm is constructed with only Rabi
rotations and is shown to reduce the number of operations. Application of the
designed pulses to the algorithm is tested by a numerical simulation.Comment: 11 pages,5 figure
Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots
Optically controlled coherent dynamics of charge (excitonic) degrees of
freedom in a semiconductor quantum dot under the influence of lattice dynamics
(phonons) is discussed theoretically. We show that the dynamics of the lattice
response in the strongly non-linear regime is governed by a semiclassical
resonance between the phonon modes and the optically driven dynamics. We stress
on the importance of the stability of intermediate states for the truly
coherent control.Comment: 4 pages, 2 figures; final version; moderate changes, new titl
Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing
We propose an all-optical implementation of quantum-information processing in
semiconductor quantum dots, where electron-hole excitations (excitons) serve as
the computational degrees of freedom (qubits). We show that the strong dot
confinement leads to an overall enhancement of Coulomb correlations and to a
strong renormalization of the excitonic states, which can be exploited for
performing conditional and unconditional qubit operations.Comment: 5 pages revtex, 2 encapsulated postscript figures. Accepted for
publication in Phys. Rev. B (Rapid Communication
Ground effects induced by the 2012 seismic sequence in Emilia: implications for seismic hazard assessment in the Po Plain
Since May 16, 2012, a seismic sequence has affected a wide portion of the Emilia Region (northern Italy), chiefly for the Modena and Ferrara Provinces. The first mainshock (Ml 5.9; focal depth, ca. 6 km) occurred on May 20, 2012, with the epicenter located a few kilometers north of Finale Emilia. A second main shock (Ml 5.8; focal depth, ca. 10 km) occurred on May 29, 2012, about 12 km west of the first earthquake, with the epicenter near Medolla. The seismic sequence has been characterized by five other Ml 655 events, and more than 2,300 aftershocks of lower magnitude, until the end July 2012. The distribution of the aftershocks identifies a WNW-ESE-trending zone ca. 40 km long that is characterized by NNE-SSW nearly pure compression, as indicated by the focal mechanisms. This report focuses on the many ground effects that were induced by this seismic sequence, as mainly cracks, liquefaction-type phenomena, and hydrological anomalies. The aim is to provide a complete representation of such effects, to: illustrate their type, size and areal distribution; identify the zones in the affected area that were most prone to the occurrence of ground effects (i.e., more susceptible to local geological instability in the case of earthquake occurrence); carry out an independent assessment of the intensities of the earthquakes through the ESI 2007 intensity scale, which is based only on coseismic effects on the natural environment
Quantum Entanglement of Excitons in Coupled Quantum Dots
Optically-controlled exciton dynamics in coupled quantum dots is studied. We
show that the maximally entangled Bell states and Greenberger-Horne-Zeilinger
(GHZ) states can be robustly generated by manipulating the system parameters to
be at the avoided crossings in the eigenenergy spectrum. The analysis of
population transfer is systematically carried out using a dressed-state
picture. In addition to the quantum dot configuration that have been discussed
by Quiroga and Johnson [Phys. Rev. Lett. \QTR{bf}{83}, 2270 (1999)], we show
that the GHZ states also may be produced in a ray of three quantum dots with a
shorter generation time.Comment: 16 pages, 7 figures, to appear in Phys. Rev.
Spin-based quantum information processing with semiconductor quantum dots and cavity QED
A quantum information processing scheme is proposed with semiconductor
quantum dots located in a high-Q single mode QED cavity. The spin degrees of
freedom of one excess conduction electron of the quantum dots are employed as
qubits. Excitonic states, which can be produced ultrafastly with optical
operation, are used as auxiliary states in the realization of quantum gates. We
show how properly tailored ultrafast laser pulses and Pauli-blocking effects,
can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure
Quantum entanglement and information processing via excitons in optically-driven quantum dots
We show how optically-driven coupled quantum dots can be used to prepare
maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation
of the strength and duration of the selective light-pulses needed for producing
these highly entangled states provides us with crucial elements for the
processing of solid-state based quantum information. Theoretical predictions
suggest that several hundred single quantum bit rotations and Controlled-Not
gates could be performed before decoherence of the excitonic states takes
place.Comment: 3 separate PostScript Figures + 7 pages. Typos corrected. Minor
changes added. This updated version is to appear in PR
Quantum-Information Processing with Semiconductor Macroatoms
An all optical implementation of quantum information processing with
semiconductor macroatoms is proposed. Our quantum hardware consists of an array
of semiconductor quantum dots and the computational degrees of freedom are
energy-selected interband optical transitions. The proposed quantum-computing
strategy exploits exciton-exciton interactions driven by ultrafast sequences of
multi-color laser pulses. Contrary to existing proposals based on charge
excitations, the present all-optical implementation does not require the
application of time-dependent electric fields, thus allowing for a
sub-picosecond, i.e. decoherence-free, operation time-scale in realistic
state-of-the-art semiconductor nanostructures.Comment: 11 pages, 5 figures, to be published in Phys. Rev. Lett., significant
changes in the text and new simulations (figure 3
Topological Quantum Gates with Quantum Dots
We present an idealized model involving interacting quantum dots that can
support both the dynamical and geometrical forms of quantum computation. We
show that by employing a structure similar to the one used in the Aharonov-Bohm
effect we can construct a topological two-qubit phase-gate that is to a large
degree independent of the exact values of the control parameters and therefore
resilient to control errors. The main components of the setup are realizable
with present technology.Comment: 8 pages, 3 figures, submitted to Jour. of Opt. B (special issue on
Quantum Computing
- …