60 research outputs found

    White matter integrity as a predictor of response to treatment in first episode psychosis

    Get PDF
    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures

    Torpor on Demand: Heterothermy in the Non-Lemur Primate Galago moholi

    Get PDF
    Hibernation and daily torpor are energy- and water-saving adaptations employed to survive unfavourable periods mostly in temperate and arctic environments, but also in tropical and arid climates. Heterothermy has been found in a number of mammalian orders, but within the primates so far it seems to be restricted to one family of Malagasy lemurs. As currently there is no evidence of heterothermy of a primate outside of Madagascar, the aim of our study was to investigate whether small primates from mainland Africa are indeed always homeothermic despite pronounced seasonal changes in weather and food availability., which inhabits a highly seasonal habitat with a hot wet-season and a cold dry-season with lower food abundance, was investigated to determine whether it is capable of heterothermy. We measured skin temperature of free-ranging individuals throughout the cool dry season using temperature-sensitive collars as well as metabolic rate in captured individuals. Torpor was employed by 15% of 20 animals. Only one of these animals displayed heterothermy in response to natural availability of food and water, whereas the other animals became torpid without access to food and water. are physiologically capable of employing torpor. However they do not use it as a routine behaviour, but only under adverse conditions. This reluctance is presumably a result of conflicting selective pressures for energy savings versus other ecological and evolutionary forces, such as reproduction or territory defence. Our results support the view that heterothermy in primates evolved before the division of African and Malagasy Strepsirhini, with the possible implication that more primate species than previously thought might still have the potential to call upon this possibility, if the situation necessitates it

    Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile

    Full text link

    Species' geographic distributions through time: Playing catchup with changing climates

    Get PDF
    This is the author's accepted manuscript.Species’ ranges are often treated as a rather fixed characteristic, rather than a fluid, ever-changing manifestation of their ecological requirements and dispersal abilities. Paleontologists generally have had a more flexible point of view on this issue than neontologists, but each perspective can improve by appreciating the other. Here, we provide an overview of paleontological and neontological perspectives on species’ geographic distributions, focusing on what can be learned about historical variations in distributions. The cross-disciplinary view, we hope, offers some novel perspectives on species-level biogeography

    3D ITO-nanowire networks as transparent electrode for all-terrain substrate

    Get PDF
    A 3D ITO nanowire network with high quality by using polystyrene as an assisted material has been prepared, demonstrating superior optoelectronic performances with a sheet resistance of 193 Ω/sq at 96% transmission. Both remarkable flexibility tested under bending stress and excellent adhesion applied on special terrain substrate have been achieved. This method has led to a full coverage of micro-holes at a depth of 18 µm and a bottom spacing of only 1 µm, as well as a perfect gap-free coverage for micro-tubes and pyramid array. It has been proved that this 3D ITO nanowire network can be used as a transparent conductive layer for optoelectronic devices with any topography surface. Through the application on the micro-holes, -tubes and -pyramid array, some new characteristics of the 3D ITO nanowires in solar cells, sensors, micro-lasers and flexible LEDs have been found. Such 3D ITO nanowire networks could be fabricated directly on micro-irregular substrates, which will greatly promote the application of the heterotypic devices

    Body Fluid Cytokine Levels in Mild Cognitive Impairment and Alzheimer’s Disease: a Comparative Overview

    Get PDF
    This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential

    Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X Syndrome

    No full text
    Background: Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent cognitive functions through 5-HT1A and 5-HT7 receptors, respectively impairing and improving learning; the underlying mechanisms are unknown. Methods: we used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1KO mice, and immunocytochemistry and biotinylation assay to study related changes of GluR2 AMPA receptor subunit surface expression. Results: application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD induced by DHPG, a group-I mGluR agonist, on CA1 pyramidal neurons in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY- 100635, was abolished by SB-269970 (5-HT7 receptor antagonist) and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased DHPG-mediated reduction of GluR2 surface expression in hippocampal slices and in cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased DHPG-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Conclusions: 5-HT7 receptor activation reverses mGluR-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS
    corecore