7,245 research outputs found
New Formalism for Numerical Relativity
We present a new formulation of the Einstein equations that casts them in an
explicitly first order, flux-conservative, hyperbolic form. We show that this
now can be done for a wide class of time slicing conditions, including maximal
slicing, making it potentially very useful for numerical relativity. This
development permits the application to the Einstein equations of advanced
numerical methods developed to solve the fluid dynamic equations, {\em without}
overly restricting the time slicing, for the first time. The full set of
characteristic fields and speeds is explicitly given.Comment: uucompresed PS file. 4 pages including 1 figure. Revised version adds
a figure showing a comparison between the standard ADM approach and the new
formulation. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Appeared
in Physical Review Letters 75, 600 (1995
Gowdy waves as a test-bed for constraint-preserving boundary conditions
Gowdy waves, one of the standard 'apples with apples' tests, is proposed as a
test-bed for constraint-preserving boundary conditions in the non-linear
regime. As an illustration, energy-constraint preservation is separately tested
in the Z4 framework. Both algebraic conditions, derived from energy estimates,
and derivative conditions, deduced from the constraint-propagation system, are
considered. The numerical errors at the boundary are of the same order than
those at the interior points.Comment: 5 pages, 1 figure. Contribution to the Spanish Relativity Meeting
200
Efficient implementation of finite volume methods in Numerical Relativity
Centered finite volume methods are considered in the context of Numerical
Relativity. A specific formulation is presented, in which third-order space
accuracy is reached by using a piecewise-linear reconstruction. This
formulation can be interpreted as an 'adaptive viscosity' modification of
centered finite difference algorithms. These points are fully confirmed by 1D
black-hole simulations. In the 3D case, evidence is found that the use of a
conformal decomposition is a key ingredient for the robustness of black hole
numerical codes.Comment: Revised version, 10 pages, 6 figures. To appear in Phys. Rev.
Complementarity of the constraints on New Physics from B_s -> mu+ mu- and from B -> K l+l- decays
We discuss the advantages of combining the experimental bound on Br(B_s ->
mu+ mu-) and the measured Br(B -> K l+l-) to get the model independent
constraints on physics beyond the Standard Model. Since the two decays give
complementary information, one can study not only the absolute values of the
Wilson coefficients that are zero in the Standard Model, but also their phases.
To identify the sector in which the new physics might appear, information about
the shapes of the transverse asymmetries in B -> K* l+l- at low q^2's can be
particularly useful. We also emphasize the importance of measuring the
forward-backward asymmetry in B -> K l+l- decay at large q^2's.Comment: 28 pp, 12 figures, 2 tables; v3: version as publishe
In Pursuit of New Physics in the B System
The B-meson system offers interesting probes for the search of physics beyond
the Standard Model. After addressing possible signals of new-physics
contributions to the B -> phi K and B -> pi K decay amplitudes, we focus on the
data for B^0_q-\bar B^0_q mixing (q = d, s), giving a critical discussion of
their interpretation in terms of model-independent new-physics parameters. We
address, in particular, the impact of the uncertainties of the relevant input
parameters, discuss benchmarks for future precision measurements at the LHC,
and explore the prospects for new CP-violating effects in the B_s-meson system,
which could be detected at the LHC.Comment: 8 pages, 7 figures, invited talk at the 1st Workshop on Theory,
Phenomenology and Experiments in Heavy Flavour Physics, Anacapri, Capri,
Italy, 29-31 May 2006, to appear in the Proceeding
A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment
Cloud robotics is revolutionizing not only the robotics industry but also the ICT world, giving robots more storage and computing capacity, opening new scenarios that blend the physical to the digital world. In this vision new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. In this paper a possible implementation of a cloud robotics architecture for the interaction between users and UAVs is described. Using the latter as monitoring agents, a service for fighting crime in urban environment is proposed, making one step forward towards the idea of smart cit
First order hyperbolic formalism for Numerical Relativity
The causal structure of Einstein's evolution equations is considered. We show
that in general they can be written as a first order system of balance laws for
any choice of slicing or shift. We also show how certain terms in the evolution
equations, that can lead to numerical inaccuracies, can be eliminated by using
the Hamiltonian constraint. Furthermore, we show that the entire system is
hyperbolic when the time coordinate is chosen in an invariant algebraic way,
and for any fixed choice of the shift. This is achieved by using the momentum
constraints in such as way that no additional space or time derivatives of the
equations need to be computed. The slicings that allow hyperbolicity in this
formulation belong to a large class, including harmonic, maximal, and many
others that have been commonly used in numerical relativity. We provide details
of some of the advanced numerical methods that this formulation of the
equations allows, and we also discuss certain advantages that a hyperbolic
formulation provides when treating boundary conditions.Comment: To appear in Phys. Rev.
Development of an experimental 10 T Nb3Sn dipole magnet for the CERN LHC
An experimental 1-m long twill aperture dipole magnet developed using a high-current Nb3Sn conductor in order to attain a magnetic field well beyond 10 T at 4.2 K is described. The emphasis in this Nb3Sn project is on the highest possible field within the known Large Hadron Collider (LHC) twin-aperture configuration. A design target of 11.5 T was chosen
Three dimensional numerical relativity: the evolution of black holes
We report on a new 3D numerical code designed to solve the Einstein equations
for general vacuum spacetimes. This code is based on the standard 3+1 approach
using cartesian coordinates. We discuss the numerical techniques used in
developing this code, and its performance on massively parallel and vector
supercomputers. As a test case, we present evolutions for the first 3D black
hole spacetimes. We identify a number of difficulties in evolving 3D black
holes and suggest approaches to overcome them. We show how special treatment of
the conformal factor can lead to more accurate evolution, and discuss
techniques we developed to handle black hole spacetimes in the absence of
symmetries. Many different slicing conditions are tested, including geodesic,
maximal, and various algebraic conditions on the lapse. With current
resolutions, limited by computer memory sizes, we show that with certain lapse
conditions we can evolve the black hole to about , where is the
black hole mass. Comparisons are made with results obtained by evolving
spherical initial black hole data sets with a 1D spherically symmetric code. We
also demonstrate that an ``apparent horizon locking shift'' can be used to
prevent the development of large gradients in the metric functions that result
from singularity avoiding time slicings. We compute the mass of the apparent
horizon in these spacetimes, and find that in many cases it can be conserved to
within about 5\% throughout the evolution with our techniques and current
resolution.Comment: 35 pages, LaTeX with RevTeX 3.0 macros. 27 postscript figures taking
7 MB of space, uuencoded and gz-compressed into a 2MB uufile. Also available
at http://jean-luc.ncsa.uiuc.edu/Papers/ and mpeg simulations at
http://jean-luc.ncsa.uiuc.edu/Movies/ Submitted to Physical Review
- …