9 research outputs found

    The associations of earlier trauma exposures and history of mental disorders with PTSD after subsequent traumas

    Get PDF
    Although earlier trauma exposure is known to predict posttraumatic stress disorder (PTSD) after subsequent traumas, it is unclear whether this association is limited to cases where the earlier trauma led to PTSD. Resolution of this uncertainty has important implications for research on pretrauma vulnerability to PTSD. We examined this issue in the World Health Organization (WHO) World Mental Health (WMH) Surveys with 34 676 respondents who reported lifetime trauma exposure. One lifetime trauma was selected randomly for each respondent. DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) PTSD due to that trauma was assessed. We reported in a previous paper that four earlier traumas involving interpersonal violence significantly predicted PTSD after subsequent random traumas (odds ratio (OR)=1.3-2.5). We also assessed 14 lifetime DSM-IV mood, anxiety, disruptive behavior and substance disorders before random traumas. We show in the current report that only prior anxiety disorders significantly predicted PTSD in a multivariate model (OR=1.5-4.3) and that these disorders interacted significantly with three of the earlier traumas (witnessing atrocities, physical violence victimization and rape). History of witnessing atrocities significantly predicted PTSD after subsequent random traumas only among respondents with prior PTSD (OR=5.6). Histories of physical violence victimization (OR=1.5) and rape after age 17 years (OR=17.6) significantly predicted only among respondents with no history of prior anxiety disorders. Although only preliminary due to reliance on retrospective reports, these results suggest that history of anxiety disorders and history of a limited number of earlier traumas might usefully be targeted in future prospective studies as distinct foci of research on individual differences in vulnerability to PTSD after subsequent traumas.The ESEMeD project is funded by the European Commission (Contracts QLG5-1999-01042; SANCO 2004123, and EAHC 20081308), (the Piedmont Region (Italy)), Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Spain (FIS 00/0028), Ministerio de Ciencia y Tecnología, Spain (SAF 2000-158-CE), Departament de Salut, Generalitat de Catalunya, Spain, Instituto de Salud Carlos III (CIBER CB06/02/0046, RETICS RD06/0011 REM-TAP), and other local agencies and by an unrestricted educational grant from GlaxoSmithKline

    Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is associated with markers of accelerated aging. Estimates of brain age, compared to chronological age, may clarify the effects of PTSD on the brain and may inform treatment approaches targeting the neurobiology of aging in the context of PTSD. METHOD: Adult subjects (N = 2229; 56.2% male) aged 18-69 years (mean = 35.6, SD = 11.0) from 21 ENIGMA-PGC PTSD sites underwent T1-weighted brain structural magnetic resonance imaging, and PTSD assessment (PTSD+, n = 884). Previously trained voxel-wise (brainageR) and region-of-interest (BARACUS and PHOTON) machine learning pipelines were compared in a subset of control subjects (n = 386). Linear mixed effects models were conducted in the full sample (those with and without PTSD) to examine the effect of PTSD on brain predicted age difference (brain PAD; brain age - chronological age) controlling for chronological age, sex, and scan site. RESULTS: BrainageR most accurately predicted brain age in a subset (n = 386) of controls (brainageR: ICC = 0.71, R = 0.72, MAE = 5.68; PHOTON: ICC = 0.61, R = 0.62, MAE = 6.37; BARACUS: ICC = 0.47, R = 0.64, MAE = 8.80). Using brainageR, a three-way interaction revealed that young males with PTSD exhibited higher brain PAD relative to male controls in young and old age groups; old males with PTSD exhibited lower brain PAD compared to male controls of all ages. DISCUSSION: Differential impact of PTSD on brain PAD in younger versus older males may indicate a critical window when PTSD impacts brain aging, followed by age-related brain changes that are consonant with individuals without PTSD. Future longitudinal research is warranted to understand how PTSD impacts brain aging across the lifespan

    Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable
    corecore