2 research outputs found

    Noninvasive Evaluation of Injectable Chitosan/Nano-Hydroxyapatite/Collagen Scaffold via Ultrasound

    Get PDF
    To meet the challenges of designing an in situ forming scaffold and regenerating bone with complex three-dimensional (3D) structures, an in situ forming hydrogel scaffold based on nano-hydroxyapatite (nHA), collagen (Col), and chitosan (CS) was synthesized. Currently, only a limited number of techniques are available to mediate and visualize the injection process of the injectable biomaterials directly and noninvasively. In this study, the potential of ultrasound for the quantitative in vivo evaluation of tissue development in CS/nHAC scaffold was evaluated. The CS/nHAC scaffold was injected into rat subcutaneous tissue and evaluated for 28 days. Quantitative measurements of the gray-scale value, volume, and blood flow of the scaffold were evaluated using diagnostic technique. This study demonstrates that ultrasound can be used to noninvasively and nondestructively monitor and evaluate the in vivo characteristics of injectable bone scaffold. In comparison to the CS, the CS/nHAC scaffold showed a greater stiffness, less degradation rate, and better blood supply in the in vivo evaluation. In conclusion, the diagnostic ultrasound method is a good tool to evaluate the in vivo formation of injectable bone scaffolds and facilitates the broad use to monitor tissue development and remodeling in bone tissue engineering

    Osteogenesis Capability and Degradation Property Evaluation of Injectable Biomaterials: Comparison of Computed Tomography and Ultrasound

    Get PDF
    Injectable biomaterials, which can be physically inserted into a target site without the use of surgery, have received increasing attention in tissue engineering during the last decade. There is also a growing need for quantitative evaluation of the injectable biomaterial directly and noninvasively. The objectives of this study are to originate a quantitative noninvasive technique for evaluation of in situ forming bone biomaterials and to validate the feasibility of diagnostic ultrasound images analysis technique. The potential of ultrasound for quantitative evaluation of tissue development was compared with computed tomography (CT) in vivo. A strong correlation was witnessed between ultrasound gray-scale values (GV) and volumetric mean of CT value (HUm) (r=0.95). Meanwhile, the volume of the material area could be estimated by ultrasound maximum cross-section pixel, which demonstrates a certain consistency with CT mask volume in 3D reconstruction images (r=0.87). In conclusion, ultrasound imaging, which is corresponding with the traditional CT, can be used to evaluate osteogenesis capability and degradation property of injectable biomaterials. It may be a noninvasive, nonradioactive, and effective aid to monitor ossification and reconstruction of biomaterials at the implant region for bone defect repair
    corecore