44 research outputs found

    Pig genome sequence - analysis and publication strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing.</p> <p>Results</p> <p>Assemblies of the BAC clone derived genome sequence have been annotated using the Pre-Ensembl and Ensembl automated pipelines and made accessible through the Pre-Ensembl/Ensembl browsers. The current annotated genome assembly (Sscrofa9) was released with Ensembl 56 in September 2009. A revised assembly (Sscrofa10) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30× genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were preferentially selected for sequencing. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement the data have been released into public sequence repositories (Genbank/EMBL, NCBI/Ensembl trace repositories) in a timely manner and in advance of publication.</p> <p>Conclusions</p> <p>In this marker paper, the Swine Genome Sequencing Consortium (SGSC) sets outs its plans for analysis of the pig genome sequence, for the application and publication of the results.</p

    Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPPIRI3L/iASPP

    Get PDF
    Background: Previous results have suggested an association of the region of 19q13.3 with several forms of cancer. In the present study, we investigated 27 public markers within a previously identified 69 kb stretch of chromosome 19q for association with breast cancer by using linkage disequilibrium mapping. The study groups included 434 postmenopausal breast cancer cases and an identical number of individually matched controls. Methods and Results: Studying one marker at a time, we found a region spanning the gene RAI ( alias PPP1R13L or iASPP) and the 5' portion of XPD to be associated with this cancer. The region corresponds to a haplotype block, in which there seems to be very limited recombination in the Danish population. Studying combinations of markers, we found that two to four neighboring markers gave the most consistent and strongest result. The haplotypes with strongest association with cancers were located in the gene RAI and just 3' to the gene. Coinciding peaks were seen in the region of RAI in groups of women of different age. In a follow-up to these results we sequenced 10 cases and 10 controls in a 44 kb region spanning the peaks of association. This revealed 106 polymorphisms, many of which were not in the public databases. We tested an additional 44 of these for association with disease and found a new tandem repeat marker, called RAI-3' d1, located downstream of the transcribed region of RAI, which was more strongly associated with breast cancer than any other marker we have tested (RR = 2.44 (1.41 - 4.23, p = 0.0008, all cases; RR = 6.29 (1.49 - 26.6), p = 0.01, cases up to 55 years of age). Conclusion: We expect the marker RAI-3' d1 to be (part of) the cause for the association of the chromosome 19q13.3 region's association with cancer

    A genetically modified minipig model for Alzheimer's disease with SORL1 haploinsufficiency

    Get PDF
    The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD

    Haplotype frequencies in a sub-region of chromosome 19q13.3, related to risk and prognosis of cancer, differ dramatically between ethnic groups

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A small region of about 70 kb on human chromosome 19q13.3 encompasses 4 genes of which 3, <it>ERCC1</it>, <it>ERCC2</it>, and <it>PPP1R13L </it>(aka <it>RAI</it>) are related to DNA repair and cell survival, and one, <it>CD3EAP</it>, aka <it>ASE1</it>, may be related to cell proliferation. The whole region seems related to the cellular response to external damaging agents and markers in it are associated with risk of several cancers.</p> <p>Methods</p> <p>We downloaded the genotypes of all markers typed in the 19q13.3 region in the HapMap populations of European, Asian and African descent and inferred haplotypes. We combined the European HapMap individuals with a Danish breast cancer case-control data set and inferred the association between HapMap haplotypes and disease risk.</p> <p>Results</p> <p>We found that the susceptibility haplotype in our European sample had increased from 2 to 50 percent very recently in the European population, and to almost the same extent in the Asian population. The cause of this increase is unknown. The maximal proportion of overall genetic variation due to differences between groups for Europeans versus Africans and Europeans versus Asians (the F<sub>st </sub>value) closely matched the putative location of the susceptibility variant as judged from haplotype-based association mapping.</p> <p>Conclusion</p> <p>The combined observation that a common haplotype causing an increased risk of cancer in Europeans and a high differentiation between human populations is highly unusual and suggests a causal relationship with a recent increase in Europeans caused either by genetic drift overruling selection against the susceptibility variant or a positive selection for the same haplotype. The data does not allow us to distinguish between these two scenarios. The analysis suggests that the region is not involved in cancer risk in Africans and that the susceptibility variants may be more finely mapped in Asian populations.</p

    Novel variation and <i>de novo </i>mutation rates in population-wide <i>de novo</i> assembled Danish trios

    Get PDF
    Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e−8 and 1.5e−9 per nucleotide per generation for SNVs and indels, respectively
    corecore