70 research outputs found

    Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width

    Full text link
    A subset of the d-dimensional Euclidean space having nonempty interior is called a spindle convex body if it is the intersection of (finitely or infinitely many) congruent d-dimensional closed balls. The spindle convex body is called a "fat" one, if it contains the centers of its generating balls. The core part of this paper is an extension of Schramm's theorem and its proof on illuminating convex bodies of constant width to the family of "fat" spindle convex bodies.Comment: 17 page

    The Fermat-Torricelli problem in normed planes and spaces

    Full text link
    We investigate the Fermat-Torricelli problem in d-dimensional real normed spaces or Minkowski spaces, mainly for d=2. Our approach is to study the Fermat-Torricelli locus in a geometric way. We present many new results, as well as give an exposition of known results that are scattered in various sources, with proofs for some of them. Together, these results can be considered to be a minitheory of the Fermat-Torricelli problem in Minkowski spaces and especially in Minkowski planes. This demonstrates that substantial results about locational problems valid for all norms can be found using a geometric approach

    On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces

    Get PDF
    We study the recurrence and ergodicity for the billiard on noncompact polygonal surfaces with a free, cocompact action of Z\Z or Z2\Z^2. In the Z\Z-periodic case, we establish criteria for recurrence. In the more difficult Z2\Z^2-periodic case, we establish some general results. For a particular family of Z2\Z^2-periodic polygonal surfaces, known in the physics literature as the wind-tree model, assuming certain restrictions of geometric nature, we obtain the ergodic decomposition of directional billiard dynamics for a dense, countable set of directions. This is a consequence of our results on the ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure

    Geometric Approach to Pontryagin's Maximum Principle

    Get PDF
    Since the second half of the 20th century, Pontryagin's Maximum Principle has been widely discussed and used as a method to solve optimal control problems in medicine, robotics, finance, engineering, astronomy. Here, we focus on the proof and on the understanding of this Principle, using as much geometric ideas and geometric tools as possible. This approach provides a better and clearer understanding of the Principle and, in particular, of the role of the abnormal extremals. These extremals are interesting because they do not depend on the cost function, but only on the control system. Moreover, they were discarded as solutions until the nineties, when examples of strict abnormal optimal curves were found. In order to give a detailed exposition of the proof, the paper is mostly self\textendash{}contained, which forces us to consider different areas in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page

    A generalization of the concept of distance based on the simplex inequality

    Get PDF
    We introduce and discuss the concept of n-distance, a generalization to n elements of the classical notion of distance obtained by replacing the triangle inequality with the so-called simplex inequality d(x1,…,xn)≤K∑i=1nd(x1,…,xn)zi,x1,…,xn,z∈X, where K=1. Here d(x1,…,xn)zi is obtained from the function d(x1,…,xn) by setting its ith variable to z. We provide several examples of n-distances, and for each of them we investigate the infimum of the set of real numbers K∈]0,1] for which the inequality above holds. We also introduce a generalization of the concept of n-distance obtained by replacing in the simplex inequality the sum function with an arbitrary symmetric function

    Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems

    Get PDF
    <p>The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists <emph>regular synthesis</emph> of trajectories, the Maximum Principle also is a <emph>sufficient</emph> condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.</p
    • …
    corecore