70 research outputs found
Illuminating spindle convex bodies and minimizing the volume of spherical sets of constant width
A subset of the d-dimensional Euclidean space having nonempty interior is
called a spindle convex body if it is the intersection of (finitely or
infinitely many) congruent d-dimensional closed balls. The spindle convex body
is called a "fat" one, if it contains the centers of its generating balls. The
core part of this paper is an extension of Schramm's theorem and its proof on
illuminating convex bodies of constant width to the family of "fat" spindle
convex bodies.Comment: 17 page
The Fermat-Torricelli problem in normed planes and spaces
We investigate the Fermat-Torricelli problem in d-dimensional real normed
spaces or Minkowski spaces, mainly for d=2. Our approach is to study the
Fermat-Torricelli locus in a geometric way. We present many new results, as
well as give an exposition of known results that are scattered in various
sources, with proofs for some of them. Together, these results can be
considered to be a minitheory of the Fermat-Torricelli problem in Minkowski
spaces and especially in Minkowski planes. This demonstrates that substantial
results about locational problems valid for all norms can be found using a
geometric approach
On recurrence and ergodicity for geodesic flows on noncompact periodic polygonal surfaces
We study the recurrence and ergodicity for the billiard on noncompact
polygonal surfaces with a free, cocompact action of or . In the
-periodic case, we establish criteria for recurrence. In the more difficult
-periodic case, we establish some general results. For a particular
family of -periodic polygonal surfaces, known in the physics literature
as the wind-tree model, assuming certain restrictions of geometric nature, we
obtain the ergodic decomposition of directional billiard dynamics for a dense,
countable set of directions. This is a consequence of our results on the
ergodicity of \ZZ-valued cocycles over irrational rotations.Comment: 48 pages, 12 figure
Geometric Approach to Pontryagin's Maximum Principle
Since the second half of the 20th century, Pontryagin's Maximum Principle has
been widely discussed and used as a method to solve optimal control problems in
medicine, robotics, finance, engineering, astronomy. Here, we focus on the
proof and on the understanding of this Principle, using as much geometric ideas
and geometric tools as possible. This approach provides a better and clearer
understanding of the Principle and, in particular, of the role of the abnormal
extremals. These extremals are interesting because they do not depend on the
cost function, but only on the control system. Moreover, they were discarded as
solutions until the nineties, when examples of strict abnormal optimal curves
were found. In order to give a detailed exposition of the proof, the paper is
mostly self\textendash{}contained, which forces us to consider different areas
in mathematics such as algebra, analysis, geometry.Comment: Final version. Minors changes have been made. 56 page
Controllability on infinite-dimensional manifolds
Following the unified approach of A. Kriegl and P.W. Michor (1997) for a
treatment of global analysis on a class of locally convex spaces known as
convenient, we give a generalization of Rashevsky-Chow's theorem for control
systems in regular connected manifolds modelled on convenient
(infinite-dimensional) locally convex spaces which are not necessarily
normable.Comment: 19 pages, 1 figur
A generalization of the concept of distance based on the simplex inequality
We introduce and discuss the concept of n-distance, a generalization to n elements of the classical notion of distance obtained by replacing the triangle inequality with the so-called simplex inequality
d(x1,…,xn)≤K∑i=1nd(x1,…,xn)zi,x1,…,xn,z∈X,
where K=1. Here d(x1,…,xn)zi is obtained from the function d(x1,…,xn) by setting its ith variable to z. We provide several examples of n-distances, and for each of them we investigate the infimum of the set of real numbers K∈]0,1] for which the inequality above holds. We also introduce a generalization of the concept of n-distance obtained by replacing in the simplex inequality the sum function with an arbitrary symmetric function
Sufficient conditions for Lagrange, Mayer, and Bolza optimization problems
<p>The Maximum Principle [2,13] is a well known necessary condition for optimality. This condition, generally, is not sufficient. In [3], the author proved that if there exists <emph>regular synthesis</emph> of trajectories, the Maximum Principle also is a <emph>sufficient</emph> condition for time-optimality. In this article, we generalize this result for Lagrange, Mayer, and Bolza optimization problems.</p
- …