10,974 research outputs found
The Structure & Dynamics of Massive Early-type Galaxies: On Homology, Isothermality and Isotropy inside one Effective Radius
Based on 58 SLACS strong-lens early-type galaxies with direct total-mass and
stellar-velocity dispersion measurements, we find that inside one effective
radius massive elliptical galaxies with M_eff >= 3x10^10 M_sun are
well-approximated by a power-law ellipsoid with an average logaritmic density
slope of = -dlog(rho_tot)/dlog(r)=2.085^{+0.025}_{-0.018} (random
error on mean) for isotropic orbits with beta_r=0, +-0.1 (syst.) and
sigma_gamma' <= 0.20^{+0.04}_{-0.02} intrinsic scatter (all errors indicate the
68 percent CL). We find no correlation of gamma'_LD with galaxy mass (M_eff),
rescaled radius (i.e. R_einst/R_eff) or redshift, despite intrinsic differences
in density-slope between galaxies. Based on scaling relations, the average
logarithmic density slope can be derived in an alternative manner, fully
independent from dynamics, yielding =1.959 +- 0.077. Agreement
between the two values is reached for =0.45 +- 0.25, consistent with
mild radial anisotropy. This agreement supports the robustness of our results,
despite the increase in mass-to-light ratio with total galaxy mass: M_eff ~
L_{V,eff}^(1.363+-0.056). We conclude that massive early-type galaxies are
structurally close-to homologous with close-to isothermal total density
profiles (<=10 percent intrinsic scatter) and have at most some mild radial
anisotropy. Our results provide new observational limits on galaxy formation
and evolution scenarios, covering four Gyr look-back time.Comment: Accepted for publication by ApJL; 4 pages, 2 figure
B2 and G2 Toda systems on compact surfaces: a variational approach
We consider the B2 and G2 Toda systems on compact surfaces. We attack the
problem using variational techniques. We get existence and multiplicity of
solutions under a topological assumption on the surface and some generic
conditions on the parameters. We also extend some of the results to the case of
general systems.Comment: 28 pages, accepted on Journal of Mathematical Physic
How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-alpha forest
We present constraints on the mass of warm dark matter (WDM) particles
derived from the Lyman-alpha flux power spectrum of 55 high- resolution HIRES
spectra at 2.0 < z < 6.4. From the HIRES spectra, we obtain a lower limit of
mwdm > 1.2 keV 2 sigma if the WDM consists of early decoupled thermal relics
and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. Adding the Sloan Digital
Sky Survey Lyman-alpha flux power spectrum, we get mwdm > 4 keV and mwdm > 28
keV (2 sigma) for thermal relics and sterile neutrinos. These results improve
previous constraints by a factor two.Comment: Some issues clarified (especially resolution related). Conclusions
unchanged. Accepted version by PR
The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies
We present the current photometric dataset for the Sloan Lens ACS (SLACS)
Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have
enabled the confirmation of an additional 15 grade `A' (certain) lens systems,
bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B'
(likely) systems, SLACS has identified nearly 100 lenses and lens candidates.
Approximately 80% of the grade `A' systems have elliptical morphologies while
~10% show spiral structure; the remaining lenses have lenticular morphologies.
Spectroscopic redshifts for the lens and source are available for every system,
making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We
have developed a novel Bayesian stellar population analysis code to determine
robust stellar masses with accurate error estimates. We apply this code to
deep, high-resolution HST imaging and determine stellar masses with typical
statistical errors of 0.1 dex; we find that these stellar masses are unbiased
compared to estimates obtained using SDSS photometry, provided that informative
priors are used. The stellar masses range from 10^10.5 to 10^11.8 M and
the typical stellar mass fraction within the Einstein radius is 0.4, assuming a
Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar
masses and projected ellipticities, appear to be indistinguishable from other
SDSS galaxies with similar stellar velocity dispersions. This further supports
that SLACS lenses are representative of the overall population of massive
early-type galaxies with M* >~ 10^11 M, and are therefore an ideal
dataset to investigate the kpc-scale distribution of luminous and dark matter
in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap
Inference of the Cold Dark Matter substructure mass function at z=0.2 using strong gravitational lenses
We present the results of a search for galaxy substructures in a sample of 11
gravitational lens galaxies from the Sloan Lens ACS Survey. We find no
significant detection of mass clumps, except for a luminous satellite in the
system SDSS J0956+5110. We use these non-detections, in combination with a
previous detection in the system SDSS J0946+1006, to derive constraints on the
substructure mass function in massive early-type host galaxies with an average
redshift z ~ 0.2 and an average velocity dispersion of 270 km/s. We perform a
Bayesian inference on the substructure mass function, within a median region of
about 32 kpc squared around the Einstein radius (~4.2 kpc). We infer a mean
projected substructure mass fraction at the 68
percent confidence level and a substructure mass function slope < 2.93
at the 95 percent confidence level for a uniform prior probability density on
alpha. For a Gaussian prior based on Cold Dark Matter (CDM) simulations, we
infer and a slope of =
1.90 at the 68 percent confidence level. Since only one
substructure was detected in the full sample, we have little information on the
mass function slope, which is therefore poorly constrained (i.e. the Bayes
factor shows no positive preference for any of the two models).The inferred
fraction is consistent with the expectations from CDM simulations and with
inference from flux ratio anomalies at the 68 percent confidence level.Comment: Accepted for publication on MNRAS, some typos corrected and some
important references adde
Possible evidence for an inverted temperature-density relation in the intergalactic medium from the flux distribution of the Lyman-alpha forest
We compare the improved measurement of the Lya forest flux probability
distribution at 1.7<z<3.2 presented by Kim et al. (2007) to a large set of
hydrodynamical simulations of the Lya forest with different cosmological
parameters and thermal histories. The simulations are in good agreement with
the observational data if the temperature-density relation for the low density
intergalactic medium (IGM), T=T_0 Delta^{gamma-1}, is either close to
isothermal or inverted (gamma<1). Our results suggest that the voids in the IGM
may be significantly hotter and the thermal state of the low density IGM may be
substantially more complex than is usually assumed at these redshifts. We
discuss radiative transfer effects which alter the spectral shape of ionising
radiation during the epoch of HeII reionisation as a possible physical
mechanism for achieving an inverted temperature-density relation at z~3.Comment: 16 pages, 6 figures, accepted for publication in MNRAS following
minor revision. The accepted version includes an expanded discussion of the
flux power spectru
The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics
We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is
to disentangle the stellar and dark matter content of massive early-type
galaxies (ETGs), through combined strong gravitational lensing, dynamics and
spectroscopic stellar population studies. The sample consists of 11 lens
galaxies covering the redshift range from to and having stellar
velocity dispersions between and . All
galaxies have multi-band, high-quality HST imaging. We have obtained long-slit
spectra of the lens galaxies with X-shooter on the VLT. We are able to
disentangle the dark and luminous mass components by combining lensing and
extended kinematics data-sets, and we are also able to precisely constrain
stellar mass-to-light ratios and infer the value of the low-mass cut-off of the
IMF, by adding spectroscopic stellar population information. Our goal is to
correlate these IMF parameters with ETG masses and investigate the relation
between baryonic and non-baryonic matter during the mass assembly and structure
formation processes. In this paper we provide an overview of the survey,
highlighting its scientific motivations, main goals and techniques. We present
the current sample, briefly describing the data reduction and analysis process,
and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA
The Sloan Lens ACS Survey. X. Stellar, Dynamical, and Total Mass Correlations of Massive Early-type Galaxies
We use stellar masses, photometry, lensing, and velocity dispersions to
investigate empirical correlations for the final sample of 73 early-type lens
galaxies (ETGs) from the SLACS survey. The traditional correlations
(Fundamental Plane [FP] and its projections) are consistent with those found
for non-lens galaxies, supporting the thesis that SLACS lens galaxies are
representative of massive ETGs. The addition of strong lensing estimates of the
total mass allows us to gain further insights into their internal structure: i)
the mean slope of the total mass density profile is = 2.078+/-0.027
with an intrinsic scatter of 0.16+/-0.02; ii) gamma' correlates with effective
radius and central mass density, in the sense that denser galaxies have steeper
profiles; iii) the dark matter fraction within reff/2 is a monotonically
increasing function of galaxy mass and size; iv) the dimensional mass M_dim is
proportional to the total mass, and both increase more rapidly than stellar
mass M*; v) the Mass Plane (MP), obtained by replacing surface brightness with
surface mass density in the FP, is found to be tighter and closer to the virial
relation than the FP and the M*P, indicating that the scatter of those
relations is dominated by stellar population effects; vi) we construct the
Fundamental Hyper-Plane by adding stellar masses to the MP and find the M*
coefficient to be consistent with zero and no residual intrinsic scatter. Our
results demonstrate that the dynamical structure of ETGs is not scale invariant
and that it is fully specified by the total mass, r_eff, and sigma. Although
the basic trends can be explained qualitatively in terms of varying star
formation efficiency as a function of halo mass and as the result of dry and
wet mergers, reproducing quantitatively the observed correlations and their
tightness may be a significant challenge for galaxy formation models.Comment: 16 pages, 9 figures; submitted to ApJ after responding to the referee
comment
AfrOBIS: a marine biogeographic information system for sub-Saharan Africa
AfrOBIS is one of 11 global nodes of the Ocean Biogeographic Information System (OBIS), a freely accessible network of databases collating marine data in support of the Census of Marine Life.Versatile graphic products, provided by OBIS, can be used to display the data. To date, AfrOBIS has loaded about 3.2 million records of more than 23 000 species located mainly in the seas around southern Africa. This forms part of the 13.2 million records of more than 80 000 species currently stored in OBIS. Scouting for South African data has been successful, whereas locating records in other African countries has been much less so
Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
A general algorithm toward the solution of the fermion sign problem in
finite-temperature quantum Monte Carlo simulations has been formulated for
discretized fermion path integrals with nearest-neighbor interactions in the
Trotter direction. This multilevel approach systematically implements a simple
blocking strategy in a recursive manner to synthesize the sign cancellations
among different fermionic paths throughout the whole configuration space. The
practical usefulness of the method is demonstrated for interacting electrons in
a quantum dot.Comment: 4 pages RevTeX, incl. two figure
- …