1,833 research outputs found

    The spin contribution to the form factor of quantum graphs

    Full text link
    Following the quantisation of a graph with the Dirac operator (spin-1/2) we explain how additional weights in the spectral form factor K(\tau) due to spin propagation around orbits produce higher order terms in the small-\tau asymptotics in agreement with symplectic random matrix ensembles. We determine conditions on the group of spin rotations sufficient to generate CSE statistics.Comment: 9 page

    Generic identifiability and second-order sufficiency in tame convex optimization

    Full text link
    We consider linear optimization over a fixed compact convex feasible region that is semi-algebraic (or, more generally, "tame"). Generically, we prove that the optimal solution is unique and lies on a unique manifold, around which the feasible region is "partly smooth", ensuring finite identification of the manifold by many optimization algorithms. Furthermore, second-order optimality conditions hold, guaranteeing smooth behavior of the optimal solution under small perturbations to the objective

    Clarke subgradients of stratifiable functions

    Full text link
    We establish the following result: if the graph of a (nonsmooth) real-extended-valued function f:Rn→R∪{+∞}f:\mathbb{R}^{n}\to \mathbb{R}\cup\{+\infty\} is closed and admits a Whitney stratification, then the norm of the gradient of ff at x∈domfx\in{dom}f relative to the stratum containing xx bounds from below all norms of Clarke subgradients of ff at xx. As a consequence, we obtain some Morse-Sard type theorems as well as a nonsmooth Kurdyka-\L ojasiewicz inequality for functions definable in an arbitrary o-minimal structure

    Semiclassical Approach to Parametric Spectral Correlation with Spin 1/2

    Full text link
    The spectral correlation of a chaotic system with spin 1/2 is universally described by the GSE (Gaussian Symplectic Ensemble) of random matrices in the semiclassical limit. In semiclassical theory, the spectral form factor is expressed in terms of the periodic orbits and the spin state is simulated by the uniform distribution on a sphere. In this paper, instead of the uniform distribution, we introduce Brownian motion on a sphere to yield the parametric motion of the energy levels. As a result, the small time expansion of the form factor is obtained and found to be in agreement with the prediction of parametric random matrices in the transition within the GSE universality class. Moreover, by starting the Brownian motion from a point distribution on the sphere, we gradually increase the effect of the spin and calculate the form factor describing the transition from the GOE (Gaussian Orthogonal Ensemble) class to the GSE class.Comment: 25 pages, 2 figure

    Spectral Statistics for the Dirac Operator on Graphs

    Full text link
    We determine conditions for the quantisation of graphs using the Dirac operator for both two and four component spinors. According to the Bohigas-Giannoni-Schmit conjecture for such systems with time-reversal symmetry the energy level statistics are expected, in the semiclassical limit, to correspond to those of random matrices from the Gaussian symplectic ensemble. This is confirmed by numerical investigation. The scattering matrix used to formulate the quantisation condition is found to be independent of the type of spinor. We derive an exact trace formula for the spectrum and use this to investigate the form factor in the diagonal approximation

    Semiclassical Approach to Chaotic Quantum Transport

    Full text link
    We describe a semiclassical method to calculate universal transport properties of chaotic cavities. While the energy-averaged conductance turns out governed by pairs of entrance-to-exit trajectories, the conductance variance, shot noise and other related quantities require trajectory quadruplets; simple diagrammatic rules allow to find the contributions of these pairs and quadruplets. Both pure symmetry classes and the crossover due to an external magnetic field are considered.Comment: 33 pages, 11 figures (appendices B-D not included in journal version

    Beyond the Heisenberg time: Semiclassical treatment of spectral correlations in chaotic systems with spin 1/2

    Full text link
    The two-point correlation function of chaotic systems with spin 1/2 is evaluated using periodic orbits. The spectral form factor for all times thus becomes accessible. Equivalence with the predictions of random matrix theory for the Gaussian symplectic ensemble is demonstrated. A duality between the underlying generating functions of the orthogonal and symplectic symmetry classes is semiclassically established

    Intermediate statistics for a system with symplectic symmetry: the Dirac rose graph

    Full text link
    We study the spectral statistics of the Dirac operator on a rose-shaped graph---a graph with a single vertex and all bonds connected at both ends to the vertex. We formulate a secular equation that generically determines the eigenvalues of the Dirac rose graph, which is seen to generalise the secular equation for a star graph with Neumann boundary conditions. We derive approximations to the spectral pair correlation function at large and small values of spectral spacings, in the limit as the number of bonds approaches infinity, and compare these predictions with results of numerical calculations. Our results represent the first example of intermediate statistics from the symplectic symmetry class.Comment: 26 pages, references adde
    • …
    corecore