2 research outputs found

    Complex bending and initial destruction of hybrid timber beams

    No full text
    A mathematical model of the deformation of hybrid timber beams has been developed. By hybrid we mean bars, formed by rigid connection (gluing) on certain contact surfaces of a set of layers of different forms of cross-sections and different types of timber. In general, the bars are in conditions of complex bending with stretching-compression. The physical non-linearity of timber, as well as the different tensile and compression resistance, is taken into account. In the general case, the problem reduces either to solving a system of three nonlinear algebraic equations of the third degree with respect to generalized deformations of the cross section or to a system of three nonlinear ordinary differential equations with respect to the components of the displacement vector of the points of the axis of the rod. To solve the obtained algebraic equations the Newton method is used, the solution of the differential equations is performed using the Galerkin type method. An analytical approximation of the experimental tension-compression diagrams of timber along the fibers in the form of polynomials of the second and third degree is proposed. The coefficients of the approximating functions are determined in two ways: using the least squares method with the experimental deformation diagrams; by imposing certain requirements on the diagrams, using the basic mechanical characteristics of the timber (maximum stresses and deformations, moduli of elasticity). Numerical values of the approximation coefficients for 15 different types of timber are given. The above examples of calculations of hybrid timber beams have shown the possibility of the emergence of hidden mechanisms of destruction, as well as the strong influence of the rearrangement of layer materials on the stress-strain state of the structure. The method developed in the article for the calculation of hybrid rod-shaped timber structures offers great opportunities for solving optimization problems in the design, and allows rational use of various types of timber

    ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ дСформирования ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… Π±Π°Π»ΠΎΠΊ ΠΏΡ€ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΌ ΠΈΠ·Π³ΠΈΠ±Π΅

    No full text
    A new mathematical model for the four-point bending of reinforced concrete beams is developed and investigated. The model takes into account multi-modulus concrete behavior, nonlinear stress-strain relationships, and damage evolution. An algorithm for a numerical implementation of the model is proposed. The corresponding boundary value problem is solved by the hp-version of the least-squares collocation method in combination with an acceleration of an iterative process based on Krylov subspaces and parallelizing. Special attention is given to the influence of mathematical model parameters on the results of numerical simulation. The results are compared with experimental data and three-dimensional simulation. A satisfactory agreement is shownΠ Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ исслСдована новая матСматичСская модСль Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΈΠ±Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠ±Π΅Ρ‚ΠΎΠ½Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ разносопротивляСмости Π±Π΅Ρ‚ΠΎΠ½Π° Ρ€Π°ΡΡ‚ΡΠΆΠ΅Π½ΠΈΡŽ-ΡΠΆΠ°Ρ‚ΠΈΡŽ, физичСской нСлинСйности ΠΈ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ числСнной Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ. Π‘ΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π°Ρ краСвая Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π»Π°ΡΡŒ hp-Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ»Π»ΠΎΠΊΠ°Ρ†ΠΈΠΈ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с ускорСниСм ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ процСсса, основанным Π½Π° подпространствах ΠšΡ€Ρ‹Π»ΠΎΠ²Π°, ΠΈ распараллСливаниСм. ИсслСдовано влияниС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ числСнного модСлирования. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² расчСтов с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΈ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ согласиС с Π½ΠΈΠΌ
    corecore