109 research outputs found

    Optical properties of photonic crystal slabs with asymmetrical unit cell

    Full text link
    Using the unitarity and reciprocity properties of the scattering matrix, we analyse the symmetry and resonant optical properties of the photonic crystal slabs (PCS) with complicated unit cell. We show that the reflectivity is not changed upon the 180deg-rotation of the sample around the normal axis, even in PCS with asymmetrical unit cell. Whereas the transmissivity becomes asymmetrical if the diffraction or absorption are present. The PCS reflectivity peaks to unity near the quasiguided mode resonance for normal light incidence in the absence of diffraction, depolarisation, and absorptive losses. For the oblique incidence the full reflectivity is reached only in symmetrical PCS.Comment: 5 pages, 2 Postscript figure

    Gravitational Cherenkov losses in MOND theories

    Full text link
    Survival of high-energy cosmic rays (HECRs) against gravitational Cherenkov losses is shown not to cast strong constraints on MOND theories that are compatible with general relativity (GR): theories that coincide with GR in the high-acceleration limit. The energy-loss rate, L, is shown to be many orders smaller than those derived in the literature for theories with no extra scale. The gravitational acceleration produced by a HECR in its vicinity is much higher than the MOND acceleration a0. So, modification to GR, which underlies L, enters only beyond the MOND radius of the particle, within which GR holds sway: r_M=sqrt(Gp/c a0). The spectral cutoff, which enters L quadratically, is thus 1/r_M, not the particle's, much larger, de Broglie wavenumber: k_{dB}= p/hbar. Thus, L is smaller than published rates, which use k_{dB}, by a factor (r_M k_{dB})^2~10^{39}(cp/3.10^{11}Gev)^3. With 1/r_M as cutoff, the distance a HECR can travel without major losses is q l_M, where l_M=c^2/a0 is the MOND length, and q is a dimensionless function of parameters of the problem. Since l_M is ~2 pi times the Hubble distance, survival of HECRs does not strongly constrain GR-compatible, MOND theories. Such theories also easily satisfy existing preferred-frame limits, inasmuch as these limits are gotten in high-acceleration systems. I exemplify the results with MOND adaptations of Einstein-Aether theories.Comment: Phys. Rev. Lett.; 4 pages; added some clarifications and reference

    Diffraction radiation from a screen of finite conductivity

    Full text link
    An exact solution has been found for the problem of diffraction radiation appearing when a charged particle moves perpendicularly to a thin finite screen having arbitrary conductivity and frequency dispersion. Expressions describing the Diffraction and Cherenkov emission mechanisms have been obtained for the spectral-angular forward and backward radiation densities.Comment: 6 pages, 4 figure

    Gravitational diffraction radiation

    Get PDF
    We show that if the visible universe is a membrane embedded in a higher-dimensional space, particles in uniform motion radiate gravitational waves because of spacetime lumpiness. This phenomenon is analogous to the electromagnetic diffraction radiation of a charge moving near to a metallic grating. In the gravitational case, the role of the metallic grating is played by the inhomogeneities of the extra-dimensional space, such as a hidden brane. We derive a general formula for gravitational diffraction radiation and apply it to a higher-dimensional scenario with flat compact extra dimensions. Gravitational diffraction radiation may carry away a significant portion of the particle's initial energy. This allows to set stringent limits on the scale of brane perturbations. Physical effects of gravitational diffraction radiation are briefly discussed.Comment: 5 pages, 2 figures, RevTeX4. v2: References added. Version to appear in Phys. Rev.

    Experimental Research of the Diffraction and Vavilov-Cherenkov Radiation Generation in a Teflon Target

    Full text link
    Geometry of Vavilov-Cherekov (VChR) radiation when an electron moves close to a dielectric target is in analogy to diffraction radiation (DR) geometry. In this case we may expect DR generation from the upstream face of the target besides that VChR. The joint observation of these booth types of radiation is very interesting from the pseudo-photon viewpoint, which is applicable for relativistic electrons. Unexpected results obtained in our experiment insist on reflection about nature both DR and VChR. The experiment was performed on the relativistic electron beam of the microtron of Tomsk Polytechnic University.Comment: This article will be published in Journal of Physic

    Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

    Full text link
    The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability. Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation of this effect is given and a possible application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in the Journal of Physics: Conference Serie

    Fermat's principle of least time in the presence of uniformly moving boundaries and media

    Get PDF
    The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium is moving at a constant velocity. Two cases of motion are considered: a) the material half-space is moving parallel to the interface; b) the material half-space is moving perpendicular to the interface. In each case, a detailed analysis of the obtained refraction formula is provided, and in the latter case, an intriguing backward refraction of light is noticed and thoroughly discussed. The results confirm the validity of Fermat's principle when the optical media and the boundaries between them are moving at relativistic speeds.Comment: 11 pages, 6 figures, RevTeX 4, comments welcome; V2: revised, Fig. 7 added; V3: several typos corrected, accepted for publication in European Journal of Physics (online at: http://stacks.iop.org/EJP/28/933

    Space-Time Evolution of Ultrarelativistic Quantum Dipoles in Quantum Electrodynamics

    Full text link
    We discuss space-time evolution of ultrarelativistic quantum dipole in QED. We show that the space-time evolution can be described, in a certain approximation, by means of a regularized wave function, whose parameters are determined by the process of the dipole creation by a local current. We derive using these wave functions the dipole expansion law, that is found to coincide parametrically in the leading order with the one suggested by Farrar, Frankfurt,Liu and Strikman.Comment: 15 page

    Coherent Cherenkov radiation as an intense THz source

    Get PDF
    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment

    Some features of electromagnetic field of charged particle revolving about dielectric ball

    Full text link
    A relativistic electron uniformly rotating along an equatorial orbit around a dielectric ball may generate Cherenkov radiation tens of times more intense as that in case of revolution of a particle in a continuous, infinite and transparent medium. The root-mean-square values of electric and magnetic field strengths of particle are practically not localized in the central part of the equatorial plane of ball and close to the poles of ball.Comment: 6 pages, 3 figures, contribution to Proceedings of International Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi
    corecore