3,847 research outputs found
The Skyrmion strikes back: baryons and a new large limit
In the large limit of QCD, baryons can be modeled as solitons, for
instance, as Skyrmions. This modeling has been justified by Witten's
demonstration that all properties of baryons and mesons scale with
in the same way as the analogous meson-based soliton model scales with a
generic meson-meson coupling constant . An alternative large limit
(the orientifold large limit) has recently been proposed in which quarks
transform in the two-index antisymmetric representation of . By
carrying out the analog of Witten's analysis for the new orientifold large
limit, we show that baryons and solitons can also be identified in the
orientifold large limit. However, in the orientifold large limit,
the interaction amplitudes and matrix elements scale with in the
same way as soliton models scale with the generic meson coupling constant
rather than as as in the traditional large limit.Comment: 10 pages, 26 figure
On The Problem of the Quantum Heterotic Vortex
We address the problem of non-Abelian super-QCD, with a Fayet-Iliopoulos
term, as seen from the vortex worldsheet perspective. Together with the FI term
, also a mass for the adjoint superfield enters in the game.
This mass allows the interpolation between and super-QCD. While
the phenomenology of the case () is pretty much understood, much
remains to be clarified for the finite- case. We distinguish, inside the
parameter space spanned by the FI term and the mass , four different
corners where some quantitative statements can be made. These are the regions
where the strong dynamics can, in some approximation, be quantitatively
analyzed. We focus in particular on two questions: 1) Is the quantum vortex BPS
or non-BPS? 2) What is the phase of the internal non-Abelian moduli? We find
that the answer to these questions strongly depends upon the choice of the
linear term in the superpotential. We also try to explain what happens in the
most unexplored, and controversial, region of parameters, that of the quantum
heterotic vortex, where .Comment: 47 pp; v2: typo
Interplay of the volume and surface plasmons in the electron energy loss spectra of C
The results of a joint experimental and theoretical investigation of the C60
collective excitations in the process of inelastic scattering of electrons are
presented. The shape of the electron energy loss spectrum is observed to vary
when the scattering angle increases. This variation arising due to the electron
diffraction of the fullerene shell is described by a new theoretical model
which treats the fullerene as a spherical shell of a finite width and accounts
for the two modes of the surface plasmon and for the volume plasmon as well. It
is shown that at small angles, the inelastic scattering cross section is
determined mostly by the symmetric mode of the surface plasmon, while at larger
angles, the contributions of the antisymmetric surface plasmon and the volume
plasmon become prominent.Comment: 11 pages, 3 figure
On the Possibility of a Trans-Planckian Duality
We investigate the possibility of a trans-Planckian duality, which exchanges
a manifold of events (space-time), with a manifold of momenta
(energy-momentum). Gravity has a dual counter-part, that is, a geometric theory
defined on the manifold of momenta. We provide a mathematical framework that
can possibly realize this idea, and analyze its classical behaviour.Comment: 21 pages, 4 figure
The Quantum Dynamics of Heterotic Vortex Strings
We study the quantum dynamics of vortex strings in N=1 SQCD with U(N_c) gauge
group and N_f=N_c quarks. The classical worldsheet of the string has N=(0,2)
supersymmetry, but this is broken by quantum effects. We show how the pattern
of supersymmetry breaking and restoration on the worldsheet captures the
quantum dynamics of the underlying 4d theory. We also find qualitative matching
of the meson spectrum in 4d and the spectrum on the worldsheet.Comment: 13 page
Heterotic Vortex Strings
We determine the low-energy N=(0,2) worldsheet dynamics of vortex strings in
a large class of non-Abelian N=1 supersymmetric gauge theories.Comment: 44 pages, 3 figures. v2: typos corrected, reference adde
Monopoles and Holography
We present a holographic theory in AdS_4 whose zero temperature ground state
develops a crystal structure, spontaneously breaking translational symmetry.
The crystal is induced by a background magnetic field, but requires no chemical
potential. This lattice arises from the existence of 't Hooft-Polyakov monopole
solitons in the bulk which condense to form a classical object known as a
monopole wall. In the infra-red, the magnetic field is screened and there is an
emergent SU(2) global symmetry.Comment: 33 pages, 16 figures; v2: ref adde
Magnetic Catalysis in AdS4
We study the formation of fermion condensates in Anti de Sitter space. In
particular, we describe a novel version of magnetic catalysis that arises for
fermions in asymptotically AdS4 geometries which cap off in the infra-red with
a hard wall. We show that the presence of a magnetic field induces a fermion
condensate in the bulk that spontaneously breaks CP symmetry. From the
perspective of the dual boundary theory, this corresponds to a strongly coupled
version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected,
extra comments added in appendix. v3: extra comments about fermion modes in a
hard wall background. v4: A final factor of
Type I Non-Abelian Superconductors in Supersymmetric Gauge Theories
Non-BPS non-Abelian vortices with CP^1 internal moduli space are studied in
an N=2 supersymmetric U(1) x SU(2) gauge theory with softly breaking adjoint
mass terms. For generic internal orientations the classical force between two
vortices can be attractive or repulsive. On the other hand, the mass of the
scalars in the theory is always less than that of the vector bosons; also, the
force between two vortices with the same CP^1 orientation is always attractive:
for these reasons we interpret our model as a non-Abelian generalization of
type I superconductors. We compute the effective potential in the limit of two
well separated vortices. It is a function of the distance and of the relative
colour-flavour orientation of the two vortices; in this limit we find an
effective description in terms of two interacting CP^1 sigma models. In the
limit of two coincident vortices we find two different solutions with the same
topological winding and, for generic values of the parameters, different
tensions. One of the two solutions is described by a CP^1 effective sigma
model, while the other is just an Abelian vortex without internal degrees of
freedom. For generic values of the parameters, one of the two solutions is
metastable, while there are evidences that the other one is truly stable.Comment: 35 pages, 8 figures. v2: fixed typos and added small comments, v3
removed an unecessary figur
- …