86 research outputs found
A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration
This article addresses the problem of two- and higher dimensional pattern
matching, i.e. the identification of instances of a template within a larger
signal space, which is a form of registration. Unlike traditional correlation,
we aim at obtaining more selective matchings by considering more strict
comparisons of gray-level intensity. In order to achieve fast matching, a
nonlinear thresholded version of the fast Fourier transform is applied to a
gray-level decomposition of the original 2D image. The potential of the method
is substantiated with respect to real data involving the selective
identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure
Estimating good discrete partitions from observed data: symbolic false nearest neighbors
A symbolic analysis of observed time series data requires making a discrete
partition of a continuous state space containing observations of the dynamics.
A particular kind of partition, called ``generating'', preserves all dynamical
information of a deterministic map in the symbolic representation, but such
partitions are not obvious beyond one dimension, and existing methods to find
them require significant knowledge of the dynamical evolution operator or the
spectrum of unstable periodic orbits. We introduce a statistic and algorithm to
refine empirical partitions for symbolic state reconstruction. This method
optimizes an essential property of a generating partition: avoiding topological
degeneracies. It requires only the observed time series and is sensible even in
the presence of noise when no truly generating partition is possible. Because
of its resemblance to a geometrical statistic frequently used for
reconstructing valid time-delay embeddings, we call the algorithm ``symbolic
false nearest neighbors''
Intermittent exploration on a scale-free network
We study an intermittent random walk on a random network of scale-free degree
distribution. The walk is a combination of simple random walks of duration
and random long-range jumps. While the time the walker needs to cover all
the nodes increases with , the corresponding time for the edges displays a
non monotonic behavior with a minimum for some nontrivial value of . This
is a heterogeneity-induced effect that is not observed in homogeneous
small-world networks. The optimal increases with the degree of
assortativity in the network. Depending on the nature of degree correlations
and the elapsed time the walker finds an over/under-estimate of the degree
distribution exponent.Comment: 12 pages, 3 figures, 1 table, published versio
Dynamical epidemic suppression using stochastic prediction and control
We consider the effects of noise on a model of epidemic outbreaks, where the
outbreaks appear. randomly. Using a constructive transition approach that
predicts large outbreaks, prior to their occurrence, we derive an adaptive
control. scheme that prevents large outbreaks from occurring. The theory
inapplicable to a wide range of stochastic processes with underlying
deterministic structure.Comment: 14 pages, 6 figure
Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies
In previous work, empirical evidence indicated that a time-varying network
could propagate sufficient information to allow synchronization of the
sometimes coupled oscillators, despite an instantaneously disconnected
topology. We prove here that if the network of oscillators synchronizes for the
static time-average of the topology, then the network will synchronize with the
time-varying topology if the time-average is achieved sufficiently fast. Fast
switching, fast on the time-scale of the coupled oscillators, overcomes the
descychnronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of where empirical evidence suggested
that a moving averaged graph Laplacian could be used in the master-stability
function analysis. A new fast switching stability criterion here-in gives
sufficiency of a fast-switching network leading to synchronization. Although
this sufficient condition appears to be very conservative, it provides new
insights about the requirements for synchronization when the network topology
is time-varying. In particular, it can be shown that networks of oscillators
can synchronize even if at every point in time the frozen-time network topology
is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD
Anomalous behavior of trapping on a fractal scale-free network
It is known that the heterogeneity of scale-free networks helps enhancing the
efficiency of trapping processes performed on them. In this paper, we show that
transport efficiency is much lower in a fractal scale-free network than in
non-fractal networks. To this end, we examine a simple random walk with a fixed
trap at a given position on a fractal scale-free network. We calculate
analytically the mean first-passage time (MFPT) as a measure of the efficiency
for the trapping process, and obtain a closed-form expression for MFPT, which
agrees with direct numerical calculations. We find that, in the limit of a
large network order , the MFPT behaves superlinearly as with an exponent 3/2 much larger than 1, which is in sharp contrast
to the scaling with , previously obtained
for non-fractal scale-free networks. Our results indicate that the degree
distribution of scale-free networks is not sufficient to characterize trapping
processes taking place on them. Since various real-world networks are
simultaneously scale-free and fractal, our results may shed light on the
understanding of trapping processes running on real-life systems.Comment: 6 pages, 5 figures; Definitive version accepted for publication in
EPL (Europhysics Letters
Random walks on the Apollonian network with a single trap
Explicit determination of the mean first-passage time (MFPT) for trapping
problem on complex media is a theoretical challenge. In this paper, we study
random walks on the Apollonian network with a trap fixed at a given hub node
(i.e. node with the highest degree), which are simultaneously scale-free and
small-world. We obtain the precise analytic expression for the MFPT that is
confirmed by direct numerical calculations. In the large system size limit, the
MFPT approximately grows as a power-law function of the number of nodes, with
the exponent much less than 1, which is significantly different from the
scaling for some regular networks or fractals, such as regular lattices,
Sierpinski fractals, T-graph, and complete graphs. The Apollonian network is
the most efficient configuration for transport by diffusion among all
previously studied structure.Comment: Definitive version accepted for publication in EPL (Europhysics
Letters
Fractal and Transfractal Recursive Scale-Free Nets
We explore the concepts of self-similarity, dimensionality, and
(multi)scaling in a new family of recursive scale-free nets that yield
themselves to exact analysis through renormalization techniques. All nets in
this family are self-similar and some are fractals - possessing a finite
fractal dimension - while others are small world (their diameter grows
logarithmically with their size) and are infinite-dimensional. We show how a
useful measure of "transfinite" dimension may be defined and applied to the
small world nets. Concerning multiscaling, we show how first-passage time for
diffusion and resistance between hub (the most connected nodes) scale
differently than for other nodes. Despite the different scalings, the Einstein
relation between diffusion and conductivity holds separately for hubs and
nodes. The transfinite exponents of small world nets obey Einstein relations
analogous to those in fractal nets.Comment: Includes small revisions and references added as result of readers'
feedbac
- …