86 research outputs found

    A Fast and Accurate Nonlinear Spectral Method for Image Recognition and Registration

    Full text link
    This article addresses the problem of two- and higher dimensional pattern matching, i.e. the identification of instances of a template within a larger signal space, which is a form of registration. Unlike traditional correlation, we aim at obtaining more selective matchings by considering more strict comparisons of gray-level intensity. In order to achieve fast matching, a nonlinear thresholded version of the fast Fourier transform is applied to a gray-level decomposition of the original 2D image. The potential of the method is substantiated with respect to real data involving the selective identification of neuronal cell bodies in gray-level images.Comment: 4 pages, 3 figure

    Estimating good discrete partitions from observed data: symbolic false nearest neighbors

    Full text link
    A symbolic analysis of observed time series data requires making a discrete partition of a continuous state space containing observations of the dynamics. A particular kind of partition, called ``generating'', preserves all dynamical information of a deterministic map in the symbolic representation, but such partitions are not obvious beyond one dimension, and existing methods to find them require significant knowledge of the dynamical evolution operator or the spectrum of unstable periodic orbits. We introduce a statistic and algorithm to refine empirical partitions for symbolic state reconstruction. This method optimizes an essential property of a generating partition: avoiding topological degeneracies. It requires only the observed time series and is sensible even in the presence of noise when no truly generating partition is possible. Because of its resemblance to a geometrical statistic frequently used for reconstructing valid time-delay embeddings, we call the algorithm ``symbolic false nearest neighbors''

    Intermittent exploration on a scale-free network

    Full text link
    We study an intermittent random walk on a random network of scale-free degree distribution. The walk is a combination of simple random walks of duration twt_w and random long-range jumps. While the time the walker needs to cover all the nodes increases with twt_w, the corresponding time for the edges displays a non monotonic behavior with a minimum for some nontrivial value of twt_w. This is a heterogeneity-induced effect that is not observed in homogeneous small-world networks. The optimal twt_w increases with the degree of assortativity in the network. Depending on the nature of degree correlations and the elapsed time the walker finds an over/under-estimate of the degree distribution exponent.Comment: 12 pages, 3 figures, 1 table, published versio

    Dynamical epidemic suppression using stochastic prediction and control

    Full text link
    We consider the effects of noise on a model of epidemic outbreaks, where the outbreaks appear. randomly. Using a constructive transition approach that predicts large outbreaks, prior to their occurrence, we derive an adaptive control. scheme that prevents large outbreaks from occurring. The theory inapplicable to a wide range of stochastic processes with underlying deterministic structure.Comment: 14 pages, 6 figure

    Sufficient Conditions for Fast Switching Synchronization in Time Varying Network Topologies

    Full text link
    In previous work, empirical evidence indicated that a time-varying network could propagate sufficient information to allow synchronization of the sometimes coupled oscillators, despite an instantaneously disconnected topology. We prove here that if the network of oscillators synchronizes for the static time-average of the topology, then the network will synchronize with the time-varying topology if the time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscillators, overcomes the descychnronizing decoherence suggested by disconnected instantaneous networks. This result agrees in spirit with that of where empirical evidence suggested that a moving averaged graph Laplacian could be used in the master-stability function analysis. A new fast switching stability criterion here-in gives sufficiency of a fast-switching network leading to synchronization. Although this sufficient condition appears to be very conservative, it provides new insights about the requirements for synchronization when the network topology is time-varying. In particular, it can be shown that networks of oscillators can synchronize even if at every point in time the frozen-time network topology is insufficiently connected to achieve synchronization.Comment: Submitted to SIAD

    Anomalous behavior of trapping on a fractal scale-free network

    Full text link
    It is known that the heterogeneity of scale-free networks helps enhancing the efficiency of trapping processes performed on them. In this paper, we show that transport efficiency is much lower in a fractal scale-free network than in non-fractal networks. To this end, we examine a simple random walk with a fixed trap at a given position on a fractal scale-free network. We calculate analytically the mean first-passage time (MFPT) as a measure of the efficiency for the trapping process, and obtain a closed-form expression for MFPT, which agrees with direct numerical calculations. We find that, in the limit of a large network order VV, the MFPT behaves superlinearly as ∼V3/2 \sim V^{{3/2}} with an exponent 3/2 much larger than 1, which is in sharp contrast to the scaling ∼Vθ \sim V^{\theta} with θ≤1\theta \leq 1, previously obtained for non-fractal scale-free networks. Our results indicate that the degree distribution of scale-free networks is not sufficient to characterize trapping processes taking place on them. Since various real-world networks are simultaneously scale-free and fractal, our results may shed light on the understanding of trapping processes running on real-life systems.Comment: 6 pages, 5 figures; Definitive version accepted for publication in EPL (Europhysics Letters

    Random walks on the Apollonian network with a single trap

    Full text link
    Explicit determination of the mean first-passage time (MFPT) for trapping problem on complex media is a theoretical challenge. In this paper, we study random walks on the Apollonian network with a trap fixed at a given hub node (i.e. node with the highest degree), which are simultaneously scale-free and small-world. We obtain the precise analytic expression for the MFPT that is confirmed by direct numerical calculations. In the large system size limit, the MFPT approximately grows as a power-law function of the number of nodes, with the exponent much less than 1, which is significantly different from the scaling for some regular networks or fractals, such as regular lattices, Sierpinski fractals, T-graph, and complete graphs. The Apollonian network is the most efficient configuration for transport by diffusion among all previously studied structure.Comment: Definitive version accepted for publication in EPL (Europhysics Letters

    Fractal and Transfractal Recursive Scale-Free Nets

    Full text link
    We explore the concepts of self-similarity, dimensionality, and (multi)scaling in a new family of recursive scale-free nets that yield themselves to exact analysis through renormalization techniques. All nets in this family are self-similar and some are fractals - possessing a finite fractal dimension - while others are small world (their diameter grows logarithmically with their size) and are infinite-dimensional. We show how a useful measure of "transfinite" dimension may be defined and applied to the small world nets. Concerning multiscaling, we show how first-passage time for diffusion and resistance between hub (the most connected nodes) scale differently than for other nodes. Despite the different scalings, the Einstein relation between diffusion and conductivity holds separately for hubs and nodes. The transfinite exponents of small world nets obey Einstein relations analogous to those in fractal nets.Comment: Includes small revisions and references added as result of readers' feedbac
    • …
    corecore