1,407 research outputs found

    Ion source development for the proposed FNAL 750-keV injector upgrade

    Full text link
    Currently there is a Proposed FNAL 750keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60mA of H- beam current, 15Hz rep-rate, 100s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).Comment: 8 pp. 2nd International Symposium on Negative Ions, Beams and Sources: NIBS2010, 16-19 Nov 2010. Takayama, Japa

    Performance Characterization of a Solenoid-type Gas Valve for the H−H^{-} Magnetron Source at FNAL

    Full text link
    The magnetron-style H−H^{-} ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H−H^{-} ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.Comment: 4 pp. arXiv admin note: text overlap with arXiv:1701.0175

    Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source

    Full text link
    As the main H−H^{-} ion source for the accelerator complex, magnetron ion sources have been used at Fermilab since the 1970s. At the offline test stand, new R&D is carried out to develop and upgrade the present magnetron-type sources of H−H^{-} ions of up to 80 mA and 35 keV beam energy in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. In order to reduce the amount of tuning and monitoring of these ion sources, a new electronic system consisting of a current-regulated arc discharge modulator allow the ion source to run at a constant arc current for improved beam output and operation. A solenoid-type gas valve feeds H2H_{2} gas into the source precisely and independently of ambient temperature. This summary will cover several studies and design changes that have been tested and will eventually be implemented on the operational magnetron sources at Fermilab. Innovative results for this type of ion source include cathode geometries, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed. In this summary, I will highlight the advances made in ion sources at Fermilab and will outline the directions of the continuing R&D effort.Comment: 4 pp. arXiv admin note: substantial text overlap with arXiv:1701.0175

    Overview of Recent Studies and Design Changes for the FNAL Magnetron Ion Source

    Full text link
    This paper will cover several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand, with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.Comment: 8 p

    Improvements on the Stability and Operation of a Magnetron H- Ion Source

    Full text link
    The magnetron H- ion sources developed in the 1970s currently in operation at Fermilab provide beam to the rest of the accelerator complex. A series of modifications to these sources have been tested in a dedicated offline test stand with the aim of improving different operational issues. The solenoid type gas valve was tested as an alternative to the piezoelectric gas valve in order to avoid its temperature dependence. A new cesium oven was designed and tested in order to avoid glass pieces that were present with the previous oven, improve thermal insulation and fine tune its temperature. A current-regulated arc modulator was developed to run the ion source at a constant arc current, providing very stable beam outputs during operations. In order to reduce beam noise, the addition of small amounts of N2 gas was explored, as well as testing different cathode shapes with increasing plasma volume. This paper summarizes the studies and modifications done in the source over the last three years with the aim of improving its stability, reliability and overall performance.Comment: 8 pages, 19 figure

    Recent Operation of the FNAL Magnetron H−H^{-} Ion Source

    Full text link
    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H−H^{-} ion source due to upgrades in the accelerator system. Prior to November of 2012 the H−H^{-} ions for High Energy Physics (HEP) experiments were extracted at ~18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H−H^{-} ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.Comment: 8 p

    Direct detection of quantum entanglement

    Get PDF
    Quantum entanglement, after playing a significant role in the development of the foundations of quantum mechanics, has been recently rediscovered as a new physical resource with potential commercial applications such as, for example, quantum cryptography, better frequency standards or quantum-enhanced positioning and clock synchronization. On the mathematical side the studies of entanglement have revealed very interesting connections with the theory of positive maps. The capacity to generate entangled states is one of the basic requirements for building quantum computers. Hence, efficient experimental methods for detection, verification and estimation of quantum entanglement are of great practical importance. Here, we propose an experimentally viable, \emph{direct} detection of quantum entanglement which is efficient and does not require any \emph{a priori} knowledge about the quantum state. In a particular case of two entangled qubits it provides an estimation of the amount of entanglement. We view this method as a new form of quantum computation, namely, as a decision problem with quantum data structure.Comment: 4 pages, 1 eps figure, RevTe
    • …
    corecore