159 research outputs found
The alkylation response protein AidB is localized at the new poles and constriction sites in Brucella abortus
<p>Abstract</p> <p>Background</p> <p><it>Brucella abortus </it>is the etiological agent of a worldwide zoonosis called brucellosis. This alpha-proteobacterium is dividing asymmetrically, and PdhS, an essential histidine kinase, was reported to be an old pole marker.</p> <p>Results</p> <p>We were interested to identify functions that could be recruited to bacterial poles. The <it>Brucella </it>ORFeome, a collection of cloned predicted coding sequences, was placed in fusion with yellow fluorescent protein (YFP) coding sequence and screened for polar localizations in <it>B. abortus</it>. We report that AidB-YFP was systematically localized to the new poles and at constrictions sites in <it>B. abortus</it>, either in culture or inside infected HeLa cells or RAW264.7 macrophages. AidB is an acyl-CoA dehydrogenase (ACAD) homolog, similar to <it>E. coli </it>AidB, an enzyme putatively involved in destroying alkylating agents. Accordingly, a <it>B. abortus aidB </it>mutant is more sensitive than the wild-type strain to the lethality induced by methanesulphonic acid ethyl ester (EMS). The exposure to EMS led to a very low frequency of constriction events, suggesting that cell cycle is blocked during alkylation damage. The localization of AidB-YFP at the new poles and at constriction sites seems to be specific for this ACAD homolog since two other ACAD homologs fused to YFP did not show specific localization. The overexpression of <it>aidB</it>, but not the two other ACAD coding sequences, leads to multiple morphological defects.</p> <p>Conclusions</p> <p>Data reported here suggest that AidB is a marker of new poles and constriction sites, that could be considered as sites of preparation of new poles in the sibling cells originating from cell division. The possible role of AidB in the generation or the function of new poles needs further investigation.</p
Overproduced Brucella abortus PdhS-mCherry forms soluble aggregates in Escherichia coli, partially associating with mobile foci of IbpA-YFP
<p>Abstract</p> <p>Background</p> <p>When heterologous recombinant proteins are produced in <it>Escherichia coli</it>, they often precipitate to form insoluble aggregates of unfolded polypeptides called inclusion bodies. These structures are associated with chaperones like IbpA. However, there are reported cases of "non-classical" inclusion bodies in which proteins are soluble, folded and active.</p> <p>Results</p> <p>We report that the <it>Brucella abortus </it>PdhS histidine kinase fused to the mCherry fluorescent protein forms intermediate aggregates resembling "non-classical" inclusion bodies when overproduced in <it>E. coli</it>, before forming "classical" inclusion bodies. The intermediate aggregates of PdhS-mCherry are characterized by the solubility of PdhS-mCherry, its ability to specifically recruit known partners fused to YFP, suggesting that PdhS is folded in these conditions, and the quick elimination (in less than 10 min) of these structures when bacterial cells are placed on fresh rich medium. Moreover, soluble PdhS-mCherry foci do not systematically colocalize with IpbA-YFP, a marker of inclusion bodies. Instead, time-lapse experiments show that IbpA-YFP exhibits rapid pole-to-pole shuttling, until it partially colocalizes with PdhS-mCherry aggregates.</p> <p>Conclusion</p> <p>The data reported here suggest that, in <it>E. coli</it>, recombinant proteins like PdhS-mCherry may transit through a soluble and folded state, resembling previously reported "non-classical" inclusion bodies, before forming "classical" inclusion bodies. The dynamic localization of IbpA-YFP foci suggests that the IbpA chaperone could scan the <it>E. coli </it>cell to find its substrates.</p
Functional Characterization of the Incomplete Phosphotransferase System (PTS) of the Intracellular Pathogen Brucella melitensis
Background: In many bacteria, the phosphotransferase system (PTS) is a key player in the regulation of the assimilation of alternative carbon sources notably through catabolic repression. The intracellular pathogens Brucella spp. possess four PTS proteins (EI Ntr, NPr, EIIA Ntr and an EIIA of the mannose family) but no PTS permease suggesting that this PTS might serve only regulatory functions
Identification of the essential Brucella melitensis porin Omp2b as a suppressor of Bax-induced cell death in yeast in a genome-wide screening.
BACKGROUND: Inhibition of apoptosis is one of the mechanisms selected by numerous intracellular pathogenic bacteria to control their host cell. Brucellae, which are the causative agent of a worldwide zoonosis, prevent apoptosis of infected cells, probably to support survival of their replication niche. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify Brucella melitensis anti-apoptotic effector candidates, we performed a genome-wide functional screening in yeast. The B. melitensis ORFeome was screened to identify inhibitors of Bax-induced cell death in S. cerevisiae. B. melitensis porin Omp2b, here shown to be essential, prevents Bax lethal effect in yeast, unlike its close paralog Omp2a. Our results based on Omp2b size variants characterization suggest that signal peptide processing is required for Omp2b effect in yeast. CONCLUSION/SIGNIFICANCE: We report here the first application to a bacterial genome-wide library of coding sequences of this "yeast-rescue" screening strategy, previously used to highlight several new apoptosis regulators. Our work provides B. melitensis proteins that are candidates for an anti-apoptotic function, and can be tested in mammalian cells in the future. Hypotheses on possible molecular mechanisms of Bax inhibition by the B. melitensis porin Omp2b are discussed
Quality of life and pain in premenopausal women with major depressive disorder: The POWER Study
BACKGROUND: Whereas it is established that organic pain may induce depression, it is unclear whether pain is more common in healthy subjects with depression. We assessed the prevalence of pain in premenopausal women with major depression (MDD). Subjects were 21- to 45-year-old premenopausal women with MDD (N = 70; age: 35.4 +/- 6.6; mean +/- SD) and healthy matched controls (N = 36; age 35.4 +/- 6.4) participating in a study of bone turnover, the P.O.W.E.R. (Premenopausal, Osteopenia/Osteoporosis, Women, Alendronate, Depression) Study. METHODS: Patients received a clinical assessment by a pain specialist, which included the administration of two standardized forms for pain, the Brief Pain Inventory – Short Form, and the Initial Pain Assessment Tool, and two scales of everyday stressors, the Hassles and Uplifts Scales. In addition, a quality-of-life instrument, the SF-36, was used. The diagnosis of MDD was established by a semi-structured interview, according to the DSM-IV criteria. Substance P (SP) and calcitonin-gene-related-peptide (CGRP), neuropeptides which are known mediators of pain, were measured every hour for 24 h in a subgroup of patients (N = 17) and controls (N = 14). RESULTS: Approximately one-half of the women with depression reported pain of mild intensity. Pain intensity was significantly correlated with the severity of depression (r(2 )= 0.076; P = 0.04) and tended to be correlated with the severity of anxiety, (r(2 )= 0.065; P = 0.07), and the number of depressive episodes (r(2 )= 0.072; P = 0.09). Women with MDD complained of fatigue, insomnia, and memory problems and experienced everyday negative stressors more frequently than controls. Quality of life was decreased in women with depression, as indicated by lower scores in the emotional and social well-being domains of the SF-36. SP (P < 0.0003) and CGRP (P < 0.0001) were higher in depressed subjects. CONCLUSION: Women with depression experienced pain more frequently than controls, had a lower quality of life, and complained more of daily stressors. Assessment of pain may be important in the clinical evaluation of women with MDD. SP and CGRP may be useful biological markers in women with MDD
Reprint of “Chordoma in children: Case-report and review of literature”
We report an exceptional case of a very late local failure in a 9-year-old boy presenting with a chordoma of the cranio-cervical junction. The child was initially treated with a combination of surgical resection followed by high dose photon–proton radiation therapy. This aggressive therapy allowed a 9-year remission with minimal side-effects. Unfortunately, he subsequently presented with a local failure managed with a second full-dose course of protons. The child died one year later from local bleeding of unclear etiology
The histidine kinase PdhS controls cell cycle progression of the pathogenic alphaproteobacterium Brucella abortus
Bacterial differentiation is often associated with the asymmetric localization of regulatory proteins, such as histidine kinases. PdhS is an essential and polarly localized histidine kinase in the pathogenic alphaproteobacterium Brucella abortus. After cell division, PdhS is asymmetrically segregated between the two sibling cells, highlighting a differentiation event. However, the function(s) of PdhS in the B. abortus cell cycle remains unknown. We used an original approach, the pentapeptide scanning mutagenesis method, to generate a thermosensitive allele of pdhS. We report that a B. abortus strain carrying this pdhS allele displays growth arrest and an altered DivK-yellow fluorescent protein (YFP) polar localization at the restrictive temperature. Moreover, the production of a nonphosphorylatable PdhS protein or truncated PdhS proteins leads to dominant-negative effects by generating morphological defects consistent with the inhibition of cell division. In addition, we have used a domain mapping approach combined with yeast two-hybrid and fluorescence microscopy methods to better characterize the unusual PdhS sensory domain. We have identified a fragment of the PdhS sensory domain required for protein-protein interaction (amino acids [aa] 210 to 434), a fragment sufficient for polar localization (aa 1 to 434), and a fragment (aa 527 to 661) whose production in B. abortus correlates with the generation of cell shape alterations. The data support a model in which PdhS acts as an essential regulator of cell cycle progression in B. abortus and contribute to a better understanding of the differentiation program inherited by the two sibling cells
Route of Infection Strongly Impacts the Host-Pathogen Relationship
Live attenuated vaccines play a key role in the control of many human and animal pathogens. Their rational development is usually helped by identification of the reservoir of infection, the lymphoid subpopulations associated with protective immunity as well as the virulence genes involved in pathogen persistence. Here, we compared the course of Brucella melitensis infection in C57BL/6 mice infected via intraperitoneal (i.p.), intranasal (i.n.) and intradermal (i.d.) route and demonstrated that the route of infection strongly impacts all of these parameters. Following i.p. and i.n. infection, most infected cells observed in the spleen or lung were F4/80+ myeloid cells. In striking contrast, infected Ly6G+ neutrophils and CD140a+ fibroblasts were also observed in the skin after i.d. infection. The virB operon encoding for the type IV secretion system is considered essential to deflecting vacuolar trafficking in phagocytic cells and allows Brucella to multiply and persist. Unexpectedly, the ΔvirB Brucella strain, which does not persist in the lung after i.n. infection, persists longer in skin tissues than the wild strain after i.d. infection. While the CD4+ T cell-mediated Th1 response is indispensable to controlling the Brucella challenge in the i.p. model, it is dispensable for the control of Brucella in the i.d. and i.n. models. Similarly, B cells are indispensable in the i.p. and i.d. models but dispensable in the i.n. model. γδ+ T cells appear able to compensate for the absence of αβ+ T cells in the i.d. model but not in the other models. Taken together, our results demonstrate the crucial importance of the route of infection for the host pathogen relationship.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
- …