8 research outputs found

    Longitudinal amyloid and tau PET imaging in Alzheimer's disease: A systematic review of methodologies and factors affecting quantification

    Get PDF
    Deposition of amyloid and tau pathology can be quantified in vivo using positron emission tomography (PET). Accurate longitudinal measurements of accumulation from these images are critical for characterizing the start and spread of the disease. However, these measurements are challenging; precision and accuracy can be affected substantially by various sources of errors and variability. This review, supported by a systematic search of the literature, summarizes the current design and methodologies of longitudinal PET studies. Intrinsic, biological causes of variability of the Alzheimer's disease (AD) protein load over time are then detailed. Technical factors contributing to longitudinal PET measurement uncertainty are highlighted, followed by suggestions for mitigating these factors, including possible techniques that leverage shared information between serial scans. Controlling for intrinsic variability and reducing measurement uncertainty in longitudinal PET pipelines will provide more accurate and precise markers of disease evolution, improve clinical trial design, and aid therapy response monitoring

    Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies

    Get PDF
    PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four data-driven amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data driven metrics computed were the amyloid load (Aβ load), the Aβ PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, and sample size estimates to detect a 25% slowing in Aβ accumulation. RESULTS: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggests that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Quantification of amyloid PET for future clinical use: a state-of-the-art review

    Get PDF
    Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods

    Software compatibility analysis for quantitative measures of [18F]flutemetamol amyloid PET burden in mild cognitive impairment

    Full text link
    Rationale: Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer’s disease pathogenesis. In clinical practice, trained readers will visually categorise positron emission tomography (PET) scans as either Aβ positive or negative. However, adjunct quantitative analysis is becoming more widely available, where regulatory approved software can currently generate metrics such as standardised uptake value ratios (SUVr) and individual Z-scores. Therefore, it is of direct value to the imaging community to assess the compatibility of commercially available software packages. In this collaborative project, the compatibility of amyloid PET quantification was investigated across four regulatory approved software packages. In doing so, the intention is to increase visibility and understanding of clinically relevant quantitative methods. Methods: Composite SUVr using the pons as the reference region was generated from [18F]flutemetamol (GE Healthcare) PET in a retrospective cohort of 80 amnestic mild cognitive impairment (aMCI) patients (40 each male/female; mean age = 73 years, SD = 8.52). Based on previous autopsy validation work, an Aβ positivity threshold of ≥ 0.6 SUVrpons was applied. Quantitative results from MIM Software’s MIMneuro, Syntermed’s NeuroQ, Hermes Medical Solutions’ BRASS and GE Healthcare’s CortexID were analysed using intraclass correlation coefficient (ICC), percentage agreement around the Aβ positivity threshold and kappa scores. Results: Using an Aβ positivity threshold of ≥ 0.6 SUVrpons, 95% agreement was achieved across the four software packages. Two patients were narrowly classed as Aβ negative by one software package but positive by the others, and two patients vice versa. All kappa scores around the same Aβ positivity threshold, both combined (Fleiss’) and individual software pairings (Cohen’s), were ≥ 0.9 signifying “almost perfect” inter-rater reliability. Excellent reliability was found between composite SUVr measurements for all four software packages, with an average measure ICC of 0.97 and 95% confidence interval of 0.957–0.979. Correlation coefficient analysis between the two software packages reporting composite z-scores was strong (r 2 = 0.98). Conclusion: Using an optimised cortical mask, regulatory approved software packages provided highly correlated and reliable quantification of [18F]flutemetamol amyloid PET with a ≥ 0.6 SUVrpons positivity threshold. In particular, this work could be of interest to physicians performing routine clinical imaging rather than researchers performing more bespoke image analysis. Similar analysis is encouraged using other reference regions as well as the Centiloid scale, when it has been implemented by more software packages

    Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies

    Full text link
    Purpose: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four of these amyloid PET metrics against conventional techniques, using a common set of criteria. Methods: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data-driven metrics computed were the amyloid load (Aβ load), the Aβ-PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, variability of the rate of change and sample size estimates to detect a 25% slowing in Aβ accumulation. Results: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggest that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. Conclusion: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted

    Investigating reliable amyloid accumulation in Centiloids: Results from the AMYPAD Prognostic and Natural History Study

    Get PDF
    International audienceINTRODUCTION To support clinical trial designs focused on early interventions, our study determined reliable early amyloid‐β (Aβ) accumulation based on Centiloids (CL) in pre‐dementia populations. METHODS A total of 1032 participants from the Amyloid Imaging to Prevent Alzheimer's Disease–Prognostic and Natural History Study (AMYPAD‐PNHS) and Insight46 who underwent [ 18 F]flutemetamol, [ 18 F]florbetaben or [ 18 F]florbetapir amyloid‐PET were included. A normative strategy was used to define reliable accumulation by estimating the 95 th percentile of longitudinal measurements in sub‐populations ( N PNHS = 101/750, N Insight46 = 35/382) expected to remain stable over time. The baseline CL threshold that optimally predicts future accumulation was investigated using precision‐recall analyses. Accumulation rates were examined using linear mixed‐effect models. RESULTS Reliable accumulation in the PNHS was estimated to occur at >3.0 CL/year. Baseline CL of 16 [12,19] best predicted future Aβ‐accumulators. Rates of amyloid accumulation were tracer‐independent, lower for APOE ε4 non‐carriers, and for subjects with higher levels of education. DISCUSSION Our results support a 12–20 CL window for inclusion into early secondary prevention studies. Reliable accumulation definition warrants further investigations

    Clinical Effect of Early vs Late Amyloid Positron Emission Tomography in Memory Clinic Patients

    Full text link
    International audienceImportance Amyloid positron emission tomography (PET) allows the direct assessment of amyloid deposition, one of the main hallmarks of Alzheimer disease. However, this technique is currently not widely reimbursed because of the lack of appropriately designed studies demonstrating its clinical effect. Objective To assess the clinical effect of amyloid PET in memory clinic patients. Design, Setting, and Participants The AMYPAD-DPMS is a prospective randomized clinical trial in 8 European memory clinics. Participants were allocated (using a minimization method) to 3 study groups based on the performance of amyloid PET: arm 1, early in the diagnostic workup (within 1 month); arm 2, late in the diagnostic workup (after a mean [SD] 8 [2] months); or arm 3, if and when the managing physician chose. Participants were patients with subjective cognitive decline plus (SCD+; SCD plus clinical features increasing the likelihood of preclinical Alzheimer disease), mild cognitive impairment (MCI), or dementia; they were assessed at baseline and after 3 months. Recruitment took place between April 16, 2018, and October 30, 2020. Data analysis was performed from July 2022 to January 2023. Intervention Amyloid PET. Main Outcome and Measure The main outcome was the difference between arm 1 and arm 2 in the proportion of participants receiving an etiological diagnosis with a very high confidence (ie, ≥90% on a 50%-100% visual numeric scale) after 3 months. Results A total of 844 participants were screened, and 840 were enrolled (291 in arm 1, 271 in arm 2, 278 in arm 3). Baseline and 3-month visit data were available for 272 participants in arm 1 and 260 in arm 2 (median [IQR] age: 71 [65-77] and 71 [65-77] years; 150/272 male [55%] and 135/260 male [52%]; 122/272 female [45%] and 125/260 female [48%]; median [IQR] education: 12 [10-15] and 13 [10-16] years, respectively). After 3 months, 109 of 272 participants (40%) in arm 1 had a diagnosis with very high confidence vs 30 of 260 (11%) in arm 2 ( P < .001). This was consistent across cognitive stages (SCD+: 25/84 [30%] vs 5/78 [6%]; P < .001; MCI: 45/108 [42%] vs 9/102 [9%]; P < .001; dementia: 39/80 [49%] vs 16/80 [20%]; P < .001). Conclusion and Relevance In this study, early amyloid PET allowed memory clinic patients to receive an etiological diagnosis with very high confidence after only 3 months compared with patients who had not undergone amyloid PET. These findings support the implementation of amyloid PET early in the diagnostic workup of memory clinic patients. Trial Registration EudraCT Number: 2017-002527-2
    corecore