12 research outputs found
Crystal structure of the Arabidopsis SPIRAL2 C-terminal domain reveals a p80-Katanin-like domain
Epidermal cells of dark-grown plant seedlings reorient their cortical microtubule arrays in response to blue light from a net lateral orientation to a net longitudinal orientation with respect to the long axis of cells. The molecular mechanism underlying this microtubule array reorientation involves katanin, a microtubule severing enzyme, and a plant-specific microtubule associated protein called SPIRAL2. Katanin preferentially severs longitudinal microtubules, generating seeds that amplify the longitudinal array. Upon severing, SPIRAL2 binds nascent microtubule minus ends and limits their dynamics, thereby stabilizing the longitudinal array while the lateral array undergoes net depolymerization. To date, no experimental structural information is available for SPIRAL2 to help inform its mechanism. To gain insight into SPIRAL2 structure and function, we determined a 1.8 Å resolution crystal structure of the Arabidopsis thaliana SPIRAL2 C-terminal domain. The domain is composed of seven core α-helices, arranged in an α-solenoid. Amino-acid sequence conservation maps primarily to one face of the domain involving helices α1, α3, α5, and an extended loop, the α6-α7 loop. The domain fold is similar to, yet structurally distinct from the C-terminal domain of Ge-1 (an mRNA decapping complex factor involved in P-body localization) and, surprisingly, the C-terminal domain of the katanin p80 regulatory subunit. The katanin p80 C-terminal domain heterodimerizes with the MIT domain of the katanin p60 catalytic subunit, and in metazoans, binds the microtubule minus-end factors CAMSAP3 and ASPM. Structural analysis predicts that SPIRAL2 does not engage katanin p60 in a mode homologous to katanin p80. The SPIRAL2 structure highlights an interesting evolutionary convergence of domain architecture and microtubule minus-end localization between SPIRAL2 and katanin complexes, and establishes a foundation upon which structure-function analysis can be conducted to elucidate the role of this domain in the regulation of plant microtubule arrays
Executive functioning and neurodevelopmental disorders in early childhood
Background: Executive functioning deficits are common in children with neurodevelopmental disorders. However, prior research mainly focused on clinical populations employing cross-sectional designs, impeding conclusions on temporal neurodevelopmental pathways. Here, we examined the prospective association of executive functioning with subsequent autism spectrum disorder (ASD) traits and attention-deficit/hyperactivity disorder (ADHD) traits. Methods: This study included young children from the Generation R Study, a general population birth cohort. The Brief Rating Inventory of Executive Function-Preschool Version w
In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease
The ‘Self-Regulated Learning Opportunities Questionnaire': a diagnostic instrument for teacher educators' professional development
Many recent studies have stressed the importance of students’ self-regulated learning (SRL) skills for successful learning. Although primary teacher educators are aware of the importance of SRL for their students, they often find it difficult to implement SRL opportunities in their teaching. To support teacher professional development, an SRL model was described in a previous theoretical study. In the present article, this SRL model is elaborated towards the ‘SRL Opportunities Questionnaire’ (SRLOQ) that can be applied by primary teacher educators as a diagnostic instrument for classroom settings. A four-phase research design is applied consisting of scale development, score validation, further validation of the SRLOQ in primary teacher education, and a confirmatory factor analysis. Finally, a single case study is described that illustrates the usefulness of the SRLOQ in classroom practice
Olfaction: An Overlooked Sensory Modality in Applied Ethology and Animal Welfare
It has long been known that odors and olfaction play a major role in behavioral development and expression in animals. The sense of smell is employed in numerous contexts, such as foraging, mate choice, and predation risk assessment. Indeed, olfaction is the primary sensory modality for most mammals, and many domestic species kept by humans, including chickens (1). Odors are therefore likely to influence many of the handling and management procedures carried out with animals, whether on farms, in zoos, in the laboratory, or in the family home. Despite this, applied ethologists and animal welfare scientists have not to any great extent investigated chemosensory perception or included odors in their studies