104 research outputs found
Detection of vorticity in Bose-Einstein condensed gases by matter-wave interference
A phase-slip in the fringes of an interference pattern is an unmistakable
characteristic of vorticity. We show dramatic two-dimensional simulations of
interference between expanding condensate clouds with and without vorticity. In
this way, vortices may be detected even when the core itself cannot be
resolved.Comment: 3 pages, RevTeX, plus 6 PostScript figure
Generalized Pseudopotentials for Higher Partial Wave Scattering
We derive a generalized zero-range pseudopotential applicable to all partial
wave solutions to the Schroedinger equation based on a delta-shell potential in
the limit that the shell radius approaches zero. This properly models all
higher order multipole moments not accounted for with a monopolar delta
function at the origin, as used in the familiar Fermi pseudopotential for
s-wave scattering. By making the strength of the potential energy dependent, we
derive self-consistent solutions for the entire energy spectrum of the
realistic potential. We apply this to study two particles in an isotropic
harmonic trap, interacting through a central potential, and derive analytic
expressions for the energy eigenstates and eigenvalues.Comment: RevTeX 4 pages, 1 figure, final published versio
Creation of vortices in a Bose-Einstein condensate by a Raman technique
We propose a method for taking a Bose-Einstein condensate in the ground trap
state simultaneously to a different atomic hyperfine state and to a vortex trap
state. This can be accomplished through a Raman scheme in which one of the two
copropagating laser beams has a higher-order Laguerre-Gaussian mode profile.
Coefficients relating the beam waist, pulse area, and trap potentials for a
complete transfer to the m = 1 vortex are calculated for a condensate in the
non-interacting and strongly interacting regimes.Comment: RevTex, 4 pages, 2 PostScript figure
Scattering of light and atoms in a Fermi-Dirac gas with BCS pairing
We theoretically study the optical properties of a Fermi-Dirac gas in the
presence of a superfluid state. We calculate the leading quantum-statistical
corrections to the standard column density result of the electric
susceptibility. We also consider the Bragg diffraction of atoms by means of
light-stimulated transitions of photons between two intersecting laser beams.
Bardeen-Cooper-Schrieffer pairing between atoms in different internal levels
magnifies incoherent scattering processes. The absorption linewidth of a
Fermi-Dirac gas is broadened and shifted. Bardeen-Cooper-Schrieffer pairing
introduces a collisional local-field shift that may dramatically dominate the
Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static
structure function may be significantly increased due to superfluidity in the
nearforward scattering.Comment: 13 pages, 6 figures; to appear in PR
- …