4 research outputs found

    Thermo-Diffusion Effects of a Stagnation Point Flow in a Nanofluid with Convection using the Adomian Decomposition Method

    Get PDF
    The Thermo-diffusion solution effects a stagnation point flow of a nanofluid with convection using. Adomian Decomposition Method (ADM) is presented. The Partial differential equation representing the problem was reduced to an ordinary differential equation by introducing some similarity transformation variables. The transformed equations were solved using the ADM and the results were compared with existing results in the literatures. There is a good agreement between the method and the existing one, which indicate reliability of the method. The physical parameters that occurred in the solutions such as magnetic parameter, thermal Grashof numbers, concentration Grashof numbers, nano Lewis number, velocity ratio, Prandtl number were varied to determine their respective effects. It was observed that when the wall velocity is higher than the free stream velocity, the fluid velocity drop and rises when velocity at free stream is higher than the wall velocity .&nbsp

    Analytical Solution of Unsteady Boundary Layer Flow of a Nanofluid Past a Stretching Inclined Sheet With Effects of Magnetic Field

    Get PDF
     Flow of a nanofluid in a boundary layer in an inclined moving sheet at angle  is considered analytically. The Mathematical formulation consists of the Magnetic parameter, thermophoresis, and Brownian motion. Previously published work considered convective boundary condition. The present study considered an inclined stretching sheet at angle in one dimension and considered thermal conditions of non convective heating and heat flux. Solutions to  momentum,  temperature and concentration distribution depends on seven parameters, Magnetic parameter M, Lewis number Le, Prandtl number Pr, thermophoresis parameter Nt, the Brownian motion parameter Nb, unsteady parameter c and Grashof numbers Gr and Gc. The non linear coupled Differential equations were solved using the improved Adomian decomposition method and a good agreement was established with the numerical method (Shooting technique). Analytical result is also presented graphically to illustrate the effect of the earlier listed parameters on Momentum, temperature and nanofraction boundary layers. Momentum boundary layer increases with increase in Grashof numbers, angle of inclination and unsteady parameter..Keywords— Adomian Decompostion Method (ADM), Nanofluid, Inclined sheet, magnetic field effects, Numerical Method (NM).
    corecore