3 research outputs found

    The effect of N-heterocyclic carbene units on the absorption spectra of Fe(ii) complexes: A challenge for theory

    No full text
    © the Owner Societies. The absorption spectra of five Fe(ii) homoleptic and heteroleptic complexes containing strong sigma-donating N-heterocyclic carbene (NHC) and polypyridyl ligands have been theoretically characterized using a tuned range-separation functional. From a benchmark comparison of the obtained results against other functionals and a multiconfigurational reference, it is concluded that none of the methods is completely satisfactory to describe the absorption spectra. As a compromise using 20% exact exchange, the electronic excited states underlying the absorption spectra are analyzed. The low-lying energy band of all the compounds shows predominant metal-To-ligand charge transfer (MLCT) character while the triplet excited states have metal-centered (MC) nature, which becomes more pronounced with increasing the number of NHC-donor groups. Excited MC states with partial charge transfer to the NHC-donor groups are higher in energy than comparable states without these contributions. The presence of the low-lying MC states prevents the formation of long-lived MLCT states. This journal i

    Ground- And Excited-State Properties of Iron(II) Complexes Linked to Organic Chromophores

    No full text
    © Two new bichromophoric complexes, [Fe(bim-ant)2]2+ and [Fe(bim-pyr)2]2+ ([H2-bim]2+ = 1,1′-(pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium); ant = 9-anthracenyl; pyr = 1-pyrenyl), are investigated to explore the possibility of tuning the excited-state behavior in photoactive iron(II) complexes to design substitutes for noble-metal compounds. The ground-state properties of both complexes are characterized thoroughly by electrochemical methods and optical absorption spectroscopy, complemented by time-dependent density functional theory calculations. The excited states are investigated by static and time-resolved luminescence and femtosecond transient absorption spectroscopy. Both complexes exhibit room temperature luminescence, which originates from singlet states dominated by the chromophore (1Chrom). In the cationic pro-ligands and in the iron(II) complexes, the emission is shifted to red by up to 110 nm (5780 cm-1). This offers the possibility of tuning the organic chromophore emission by metal-ion coordination. The fluorescence lifetimes of the complexes are in the nanosecond range, while triplet metal-to-ligand charge-transfer (3MLCT) lifetimes are around 14 ps. An antenna effect as in ruthenium(II) polypyridine complexes connected to an organic chromophore is found in the form of an internal conversion within 3.4 ns from the 1Chrom to the 1MLCT states. Because no singlet oxygen forms from triplet oxygen in the presence of the iron(II) complexes and light, efficient intersystem crossing to the triplet state of the organic chromophore (3Chrom) is not promoted in the iron(II) complexes

    Distinct photodynamics of κ-N and κ-C pseudoisomeric iron(ii) complexes

    No full text
    Two closely related FeIIcomplexes with 2,6-bis(1-ethyl-1H-1,2,3-triazol-4yl)pyridine and 2,6-bis(1,2,3-triazol-5-ylidene)pyridine ligands are presented to gain new insights into the photophysics of bis(tridentate) iron(ii) complexes. The [Fe(N^N^N)2]2+pseudoisomer sensitizes singlet oxygen through a MC state with nanosecond lifetime after MLCT excitation, while the bis(tridentate) [Fe(C^N^C)2]2+pseudoisomer possesses a similar3MLCT lifetime as the tris(bidentate) [Fe(C^C)2(N^N)]2+complexes with four mesoionic carbenes
    corecore