3 research outputs found

    RELEVANCE OF THE TYPES AND THE STATISTICAL PROPERTIES OF FEATURES IN THE RECOGNITION OF BASIC EMOTIONS IN SPEECH

    Get PDF
    Due to the advance of speech technologies and their increasing usage in various applications, automatic recognition of emotions in speech represents one of the emerging fields in human-computer interaction. This paper deals with several topics related to automatic emotional speech recognition, most notably with the improvement of recognition accuracy by lowering the dimensionality of the feature space and evaluation of the relevance of particular feature types. The research is focused on the classification of emotional speech into five basic emotional classes (anger, joy, fear, sadness and neutral speech) using a recorded corpus of emotional speech in Serbian

    USER-AWARENESS AND ADAPTATION IN CONVERSATIONAL AGENTS

    Get PDF
    This paper considers the research question of developing user-aware and adaptive conversational agents. The conversational agent is a system which is user-aware to the extent that it recognizes the user identity and his/her emotional states that are relevant in a given interaction domain. The conversational agent is user-adaptive to the extent that it dynamically adapts its dialogue behavior according to the user and his/her emotional state. The paper summarizes some aspects of our previous work and presents work-in-progress in the field of speech-based human-machine interaction. It focuses particularly on the development of speech recognition modules in cooperation with both modules for emotion recognition and speaker recognition, as well as the dialogue management module. Finally, it proposes an architecture of a conversational agent that integrates those modules and improves each of them based on some kind of synergies among themselves

    Automatic Emotion Recognition in Speech: Possibilities and Significance

    No full text
    Automatic speech recognition and spoken language understanding are crucial steps towards a natural humanmachine interaction. The main task of the speech communication process is the recognition of the word sequence, but the recognition of prosody, emotion and stress tags may be of particular importance as well. This paper discusses thepossibilities of recognition emotion from speech signal in order to improve ASR, and also provides the analysis of acoustic features that can be used for the detection of speaker’s emotion and stress. The paper also provides a short overview of emotion and stress classification techniques. The importance and place of emotional speech recognition is shown in the domain of human-computer interactive systems and transaction communication model. The directions for future work are given at the end of this work
    corecore