245 research outputs found

    Experimental characterization and modelling of a cavitating centrifugal pump operating in fast start-up conditions

    Get PDF
    The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behaviour induces significant pressure fluctuations which may result in partial flow vaporization, i.e. cavitation. An existing experimental test rig has been updated in the LML laboratory (Lille, France) for the start-ups of a centrifugal pump. The study focuses on cavitation induced during the pump start-up. Instantaneous measurement of torque, flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behaviour during rapid starting periods. Three different types of fast start-up behaviours have been identified and have been presented at ISROMAC 12 (Duplaa et al, 2008). According to the final operating point, the start-up is characterized either by a single drop of the delivery static pressure, by several low-frequency drops, or by a water hammer phenomenon that can be observed both a the inlet and outlet of the pump. A physical analysis to explain these three different types of transient flow behaviour has been recently proposed (Duplaa et al, 2010). In the present paper, a modelling of the fast start ups in cavitating conditions is proposed. It consists of a two steps adaptation of fast start-up model in non cavitating conditions proposed by Dazin et al (2007). For that, fast X-rays imaging has been performed in the impeller with the collaboration of the French Atomic Agency (CEA) in order to determinate the high frequency evolution of the volume fraction during fast the start-ups. Although the results of the modelling presented here are not definitive, they are very promising

    Experimental and Numerical Investigation of Unforced unsteadiness in a Vaneless Radial Diffuser

    Get PDF
    The paper reports combined experimental and numerical investigations of unforced un- steadiness in a vaneless radial diffuser. Experimental data were obtained within the diffuser using stereoscopic time resolved Particle Image Velocimetry (PIV) recording three velocity components in a plane (2D/3C), coupled with unsteady pressure transducers. To characterize the inception and the evolution of the unsteady phenomena, spectral analyses of the pressure signals were carried out both in frequency and time-frequency domains and the PIV results were post processed by an original averaging method. Two partial flow rates were investigated in detail in this paper. A single unforced unsteadiness was identified for the lowest flow rate, whereas, two competitive intermittent modes were recognized for the higher mass flow. Numerical analyses were carried out on the same pump by the commercial code CFX. All the computations were performed using the unsteady transient model and the turbulence was modelled by the Scale-Adaptive Simulation (SAS) model. Numerical pressure signals were compared with the experimental data to verify the development of the same pressure fluctua- tions

    Cavitation inception in fast startup

    Get PDF
    The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behaviour is reached. The pump transient behaviour induces significant pressure fluctuations which may result in partial flow vaporization, i.e. cavitation. An existing experimental test rig has been updated in the LML laboratory (Lille, France) for the start-ups of a centrifugal pump. The study focuses on cavitation induced during the pump start-up. Instantaneous measurement of torque, mass flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behaviour during rapid starting periods

    Leakage flow simulation in a specific pump model

    Get PDF
    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up

    Double diffusion, convection de Boussinesq et convection profonde en air atmosphérique pollué ou humide

    Get PDF
    On donne la forme prise par les équations de diffusion moléculaire et on montre comment la détermination des coefficients de diffusion moléculaire de scalaires passifs inertes (polluants, humidité, etc.) dans l'air atmosphérique peut être réalisée en première approximation par des relevés de pression, température et densités dans le milieu au repos. Ces approximations sont valables lorsque l'on écrit des équations de convection peu profonde (équations de Boussinesq), quelle que soit la fréquence de Brunt–Väisälä (donc dans la stratosphère et la troposphère). Dans le cas de la convection profonde, possible uniquement dans la troposphère, la faible fréquence de Brunt–Väisälä affecte aussi l'équation de diffusion moléculaire, celle-ci modifiant de son côté la forme des équations de convection. Des évaluations plus fines des coefficients doivent également être faites, à partir de relevés statiques pour différentes distributions de température par exempl

    Foreword

    Get PDF

    Singularités de la rhéologie de l'air humide saturé et diffusion moléculaire dans les milieux nuageux

    Get PDF
    Sous des hypothèses réalistes, on propose un formalisme thermodynamique fournissant pour l'air humide saturé (milieux nuageux) une loi de Fick généralisée qui conduit à une rhéologie double diffusive avec effet Dufour. On compare les équations à celles que l'on obtient pour l'air humide non saturé (l'effet Dufour disparaît dans ce dernier cas et l'effet double diffusif devient négligeable également si l'on se trouve en modélisation Boussinesq). On montre sur l'exemple de la convection nuageuse quelques conséquences de cette diffusion

    Transient behavior of a radial vaneless diffuser

    Get PDF
    The paper refers to the behavior of a radial flow pump vaneless diffuser during a starting period. Results obtained with a 1D numerical model are compared with some new experimental data which have been obtained using 2D/3C High repetition rate PIV within the diffuser coupled with unsteady pressure measurements. These tests have been performed on a test rig with a radial impeller matched with a vaneless diffuser. They have been made in air, on a test rig well adapted for studies on interactions between impeller and diffuser, as well as for the use of optical methods and especially Particle Image Velocimetry (PIV) as there is no volute downstream of the diffuser. The present study refers to new experiments combining pressure measurements and 2D/3C High Speed PIV at partial flow rates within a vaneless diffuser with a large outlet radius. Four BrĂĽel & Kjaer condenser microphones are used for the unsteady pressure measurements. They were flush mounted on the shroud side of the diffuser wall and on the suction pipe of the pump. The sampling frequency was 2048 Hz. For PIV measurements, the laser sheet was generated by a Darwin PIV ND:YLF Laser at three heights within the diffuser. PIV snapshots have been recorded by two identical CMOS cameras. A home made software has been used for the images treatment. The results consist in fields of 80 x 120 mm2 and 81 x 125 velocity vectors with a temporal resolution of 250 velocity maps per second. For each flow rate and each laser sheet height in the diffuser, two acquisitions of about 1500 velocity maps have been realised. The experimental data are compared with the ones provided by a 1D transient model of the flow within the diffuser

    Comparisons RANS and URANS numerical results with experiments in a vaned diffuser of a centrifugal pump

    Get PDF
    the paper presents the analysis of the performance and the internal flow behaviour in the vaned diffuser of a radial flow pump using PIV (particles image velocimetry) technique, pressure probe traverses and numerical simula\u2011 tions. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given rotational speed and various flow rates. For each operating condition, PIV measurements have been made for differ\u2011 ent angular positions of the impeller. Probe traverses have also been performed using a 3 holes pressure probe from hub to shroud diffuser width at different radial locations in between the two diffuser geometrical throats. the numerical simulations were realized with the two commercial codes: i\u2011Star CCM+ 8.02.011 (rAnS (reynolds Averaged navier Stokes) turbu\u2011 lence model, frozen rotor and unsteady calculations), ii\u2011CFX 10.0 (turbulence modelled with DeS model (Detached eddy Simulation) combining rAnS with leS (large eddy Simulation), unsteady calculations). Comparisons between numerical (fully unsteady calculations) and experimental results are presented and discussed for two flow rates. In this respect, the effects of fluid leakage due to the gap between the rotating and fixed part of the pump model are analysed and discussed
    • …
    corecore