31 research outputs found

    Regenerative therapies in electrophysiology and pacing: introducing the next steps

    No full text
    The morbidity and mortality of cardiac arrhythmias are major international health concerns. Drug and device therapies have made inroads but alternative approaches are still being sought. For example, gene and cell therapies have been explored for treatment of brady- and tachyarrhythmias, and proof of concept has been obtained for both biological pacing in the setting of heart block and gene therapy for ventricular tachycardias. This paper reviews the state of the art developments with regard to gene and cell therapies for cardiac arrhythmias and discusses next step

    Gene Therapy for Restoring Heart Rhythm

    No full text

    Retinoic acid signaling in heart development: Application in the differentiation of cardiovascular lineages from human pluripotent stem cells

    No full text
    Retinoic acid (RA) signaling plays an important role during heart development in establishing anteroposterior polarity, formation of inflow and outflow tract progenitors, and growth of the ventricular compact wall. RA is also utilized as a key ingredient in protocols designed for generating cardiac cell types from pluripotent stem cells (PSCs). This review discusses the role of RA in cardiogenesis, currently available protocols that employ RA for differentiation of various cardiovascular lineages, and plausible transcriptional mechanisms underlying this fate specification. These insights will inform further development of desired cardiac cell types from human PSCs and their application in preclinical and clinical research

    Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System

    No full text
    The regenerative medicine field has been revolutionized by the direct conversion of one cell type to another by ectopic expression of lineage-specific transcription factors. The direct reprogramming of fibroblasts to induced cardiac myocytes (iCMs) by core cardiac transcription factors (Gata4, Mef2c, Tbx5) both in vitro and in vivo has paved the way in cardiac regeneration and repair. Several independent research groups have successfully reported the direct reprogramming of fibroblasts in injured myocardium to cardiac myocytes employing a variety of approaches that rely on transcription factors, small molecules, and micro RNAs (miRNAs). Recently, this technology has been considered for local repair of the pacemaker and the cardiac conduction system. To address this, we will first discuss the direct reprograming advancements in the setting of working myocardium regeneration, and then elaborate on how this technology can be applied to repair the cardiac pacemaker and the conduction system

    Direct Reprograming to Regenerate Myocardium and Repair Its Pacemaker and Conduction System

    No full text
    The regenerative medicine field has been revolutionized by the direct conversion of one cell type to another by ectopic expression of lineage-specific transcription factors. The direct reprogramming of fibroblasts to induced cardiac myocytes (iCMs) by core cardiac transcription factors (Gata4, Mef2c, Tbx5) both in vitro and in vivo has paved the way in cardiac regeneration and repair. Several independent research groups have successfully reported the direct reprogramming of fibroblasts in injured myocardium to cardiac myocytes employing a variety of approaches that rely on transcription factors, small molecules, and micro RNAs (miRNAs). Recently, this technology has been considered for local repair of the pacemaker and the cardiac conduction system. To address this, we will first discuss the direct reprograming advancements in the setting of working myocardium regeneration, and then elaborate on how this technology can be applied to repair the cardiac pacemaker and the conduction system

    miRNA-based antiarrhythmics after myocardial ischaemic injury

    No full text

    A Rare Case of Primary Meningococcal Myopericarditis in a 71-Year-Old Male

    No full text
    We describe a case of primary meningococcal C pericarditis with myocardial involvement in a 71-year-old male that is thus far the oldest patient with isolated meningococcal pericardial disease and only the third patient with primary meningococcal myopericarditis described in English literature. Our patient was successfully treated by full sternotomy and surgical drainage combined with intravenous ceftriaxone. Mild symptoms unresponsive to anti-inflammatory treatment and leukocytosis may guide clinicians towards the correct diagnosis. It is important to recognize this cause of pericarditis as the relatively mild clinical presentation may rapidly progress into tamponade and right-sided heart failure
    corecore