19 research outputs found

    Induction of nephrotic syndrome in mice by retrobulbar injection of doxorubicin and prevention of volume retention by sustained release aprotinin.

    No full text
    Nephrotic syndrome is the most extreme manifestation of proteinuric kidney disease and characterized by heavy proteinuria, hypoalbuminemia, and edema due to sodium retention and hyperlipidemia. To study the pathophysiology of this syndrome, rodent models have been developed based on the injection of toxic substances such as doxorubicin causing podocyte damage. In mice, only few strains are susceptible to this model. In wildtype 129S1/SvImJ mice, the administration of doxorubicin by rapid intravenous injection to the retrobulbar sinus induces experimental nephrotic syndrome that features all the symptoms of human disease including sodium retention and edema. After the onset of proteinuria, mice exhibit increased urinary serine protease activity that leads to the activation of the epithelial sodium channel (ENaC) and sodium retention. Pharmacological inhibition of urinary serine proteases by the treatment with sustained release aprotinin abrogates ENaC activation and prevents sodium retention. This model is ideal to study the pathophysiology of proteasuria, i.e., the excretion of active serine proteases that cause ENaC activation by the proteolysis of its gamma-subunit. This can be regarded as the primary mechanism of ENaC activation and sodium retention in proteinuric kidney disease

    79-jährige Patientin mit nephrotischer Proteinurie.

    No full text
    Die elektive Vorstellung der 79-jährigen Patientin über die nephrologische Ambulanz erfolgte zur Abklärung einer neu aufgetretenen nephrotischen Proteinurie unter Langzeittherapie einer pulmonalen Nokardiose mit Meropenem und Amikacin. Durch die Hausärztin war wegen zunehmendem Harndrang und Unterschenkel-Ödemen eine Urindiagnostik erfolgt, die eine nephrotische Proteinurie zeigte

    Rodent models to study sodium retention in experimental nephrotic syndrome.

    No full text
    Sodium retention and edema are hallmarks of nephrotic syndrome (NS). Different experimental rodent models have been established for simulating NS, however, not all of them feature sodium retention which requires proteinuria to exceed a certain threshold. In rats, puromycin aminonucleoside nephrosis (PAN) is a classic NS model introduced in 1955 that was adopted as doxorubicin-induced nephropathy (DIN) in 129S1/SvImJ mice. In recent years, mice with inducible podocin deletion (Nphs2Δipod ) or podocyte apotosis (POD-ATTAC) have been developed. In these models, sodium retention is thought to be caused by activation of the epithelial sodium channel (ENaC) in the distal nephron through aberrantly filtered serine proteases or proteasuria. Strikingly, rodent NS models follow an identical chronological time course after development of proteinuria featuring sodium retention within days and spontaneous reversal thereafter. In DIN and Nphs2Δipod mice, inhibition of ENaC by amiloride or urinary serine protease activity by aprotinin prevents sodium retention, opening up new and promising therapeutic approaches that could be translated into the treatment of nephrotic patients. However, the essential serine protease(s) responsible for ENaC activation is (are) still unknown. With the use of nephrotic rodent models, there is the possibility that this (these) will be identified in the future. This review summarizes the various rodent models used to study experimental nephrotic syndrome and the insights gained from these models with regard to the pathophysiology of sodium retention

    The authors reply.

    No full text

    Two cases of severe vitamin D3 intoxication treated with therapeutic plasma exchange and high cut-off hemodialysis.

    No full text
    We report on a 53-year-old female patient and a 33-year-old male patient presenting with life-threatening hypercalcemic crisis caused by self-induced vitamin-D intoxication. Both patients took high doses of vitamin D3 supplements, cumulatively up to 2,500,000–10,000,000 I.U. over several months. Accordingly, serum 25-OH-vitamin D concentrations were increased to 663 and 1289 nmol/L (reference 50–175 nmol/L), respectively. As forced diuresis and bisphosphonates failed to correct recurrent hypercalcemia, we hypothesized that add-on extracorporeal treatments might help overcome the refractory situation. Considering the binding of vitamin D3 metabolites to vitamin D-binding protein (VDBP, 59 kDa), we started extracorporeal treatments involving total plasma exchange with replacement by human albumin and by fresh frozen plasma, online hemodiafiltration and high cut-off hemodialysis. We found that in the former case, total plasma exchange with albumin and fresh frozen plasma and high cut-off hemodialysis lowered both 25-OH-vitamin D3 and 1,25-OH-vitamin D3, whereas in the latter case total plasma exchange with albumin was found to more effectively remove vitamin D metabolites compared to high cut-off hemodialysis. In contrast, the amount of total plasma calcium removed by high cut-off hemodialysis was higher compared to total plasma exchange with albumin. During follow up, patients 1 and 2 achieved almost normal total plasma calcium and vitamin D concentrations after 355 and 109 days, respectively. These two cases suggest that extracorporeal treatments with high cut-off hemodialysis and total plasma exchange with albumin may be considered as add-on treatment in refractory cases of vitamin D3-induced hypercalcemia to lower plasma 25-OH-vitamin D3 concentrations

    Rebuttal to editorial: Sodium retention by uPA in nephrotic syndrome?

    No full text
    We welcome the opportunity to reply to the elegant editorial of Prof. Ehmke 1 in which he highlights contradicting conclusions reached by Hinrichs et al. 2 and by us 3 in two recently published articles in Acta Physiologica. In our reply, we first comment on some technical aspects discussed by Prof. Ehmke as possible explanations for the discrepant conclusions reached in the two studies. In addition, we highlight some in vivo data reported by Hinrichs et al. 2 which in our view do not oppose but rather support our conclusion that urokinase, also known as urokinase-type plasminogen activator (uPA), is not essential for sodium retention in nephrotic syndrome

    Renal effects of the serine protease inhibitor aprotinin in healthy conscious mice.

    No full text
    Treatment with aprotinin, a broad-spectrum serine protease inhibitor with a molecular weight of 6512 Da, was associated with acute kidney injury, which was one of the reasons for withdrawal from the market in 2007. Inhibition of renal serine proteases regulating the epithelial sodium channel ENaC could be a possible mechanism. Herein, we studied the effect of aprotinin in wild-type 129S1/SvImJ mice on sodium handling, tubular function, and integrity under a control and low-salt diet. Mice were studied in metabolic cages, and aprotinin was delivered by subcutaneously implanted sustained release pellets (2 mg/day over 10 days). Mean urinary aprotinin concentration ranged between 642 ± 135 (day 2) and 127 ± 16 (day 8) µg/mL . Aprotinin caused impaired sodium preservation under a low-salt diet while stimulating excessive hyperaldosteronism and unexpectedly, proteolytic activation of ENaC. Aprotinin inhibited proximal tubular function leading to glucosuria and proteinuria. Plasma urea and cystatin C concentration increased significantly under aprotinin treatment. Kidney tissues from aprotinin-treated mice showed accumulation of intracellular aprotinin and expression of the kidney injury molecule 1 (KIM-1). In electron microscopy, electron-dense deposits were observed. There was no evidence for kidney injury in mice treated with a lower aprotinin dose (0.5 mg/day). In conclusion, high doses of aprotinin exert nephrotoxic effects by accumulation in the tubular system of healthy mice, leading to inhibition of proximal tubular function and counterregulatory stimulation of ENaC-mediated sodium transport

    Sodium retention in nephrotic syndrome is independent of the activation of the membrane-anchored serine protease prostasin (CAP1/PRSS8) and its enzymatic activity.

    No full text
    Experimental nephrotic syndrome leads to activation of the epithelial sodium channel (ENaC) by proteolysis and promotes renal sodium retention. The membrane-anchored serine protease prostasin (CAP1/PRSS8) is expressed in the distal nephron and participates in proteolytic ENaC regulation by serving as a scaffold for other serine proteases. However, it is unknown whether prostasin is also involved in ENaC-mediated sodium retention of experimental nephrotic syndrome. In this study, we used genetically modified knock-in mice with Prss8 mutations abolishing its proteolytic activity (Prss8-S238A) or prostasin activation (Prss8-R44Q) to investigate the development of sodium retention in doxorubicin-induced nephrotic syndrome. Healthy Prss8-S238A and Prss8-R44Q mice had normal ENaC activity as reflected by the natriuretic response to the ENaC blocker triamterene. After doxorubicin injection, all genotypes developed similar proteinuria. In all genotypes, urinary prostasin excretion increased while renal expression was not altered. In nephrotic mice of all genotypes, triamterene response was similarly increased, consistent with ENaC activation. As a consequence, urinary sodium excretion dropped in all genotypes and mice similarly gained body weight by + 25 ± 3% in Prss8-wt, + 20 ± 2% in Prss8-S238A and + 28 ± 3% in Prss8-R44Q mice (p = 0.16). In Western blots, expression of fully cleaved α- and γ-ENaC was similarly increased in nephrotic mice of all genotypes. In conclusion, proteolytic ENaC activation and sodium retention in experimental nephrotic syndrome are independent of the activation of prostasin and its enzymatic activity and are consistent with the action of aberrantly filtered serine proteases or proteasuria

    Proteasuria in nephrotic syndrome–quantification and proteomic profiling.

    No full text
    Nephrotic syndrome is characterized by urinary excretion of plasma proteases or proteasuria. There is a lack of data on the quantity, activity status and identity of these aberrantly filtered proteases. We established a fluorescence-based substrate assay to quantify protease activity in urine samples from healthy and nephrotic humans and mice. Protease class activity was determined after addition of specific inhibitors. Individual proteases were identified by tandem mass spectrometry (MS/MS). In spot urine samples from 10 patients with acute nephrotic syndrome of various etiology, urinary protease activity was significantly increased compared to that of healthy persons (753 ± 178 vs. 244 ± 65 relative units, p < 0.05). The corresponding proteases were highly sensitive to inhibition by the serine protease inhibitors AEBSF (reduction by 85 ± 6% and 72 ± 8%, respectively) and aprotinin (83 ± 9% vs. 25 ± 6%, p < 0.05). MS/MS of all urinary proteins or after AEBSF purification showed that most of them were active serine proteases from the coagulation and complement cascade. These findings were recapitulated in mice, pointing to a similar pathophysiology. In conclusion, nephrotic syndrome leads to increased urinary excretion of active plasma proteases which can be termed proteasuria. Serine proteases account for the vast majority of urinary protease activity in health and nephrotic syndrome. Significance statement: In this study, we found that nephrotic urine samples of humans and mice have a significantly increased protease activity compared to healthy urine samples, using a universal pentapeptide substrate library. This was driven by increased excretion of aprotinin-sensitive serine proteases. With tandem mass spectrometry, we provide a comprehensive and systematic overview of all urinary proteases or the “urine proteasome”. We identified renally expressed proteases in health and addition of proteases from the coagulation and complement cascade in the nephrotic state. These results set the basis to study the role of urinary proteases at both health and nephrotic syndrome to find diagnostic markers of renal disease as well as possible therapeutic targets
    corecore