2,399 research outputs found

    A method of specimen corrosion protection for high temperature creep testing

    Get PDF
    The determination of mechanical properties of materials at elevated temperature presents difficulties, particularly when the material to be tested is subject to oxidation. Various methods have been employed to permit the evaluation of high temperature creep properties. The method described in this paper was developed on the basis of modifications of a technique developed for the protection of high temperature fatigue specimens. The method involves encasing the creep specimen in a flexible capsule which is capable of withstanding exposure to the atmosphere for extended periods at temperatures up to 1000C. Extensive testing of materials such as uranium and tantalum has provided the basis for claims relative to the effectiveness of this technique

    Flaring Up All Over -- Radio Activity in Rapidly-Rotating Late-Type M and L Dwarfs

    Full text link
    We present Very Large Array observations of twelve late M and L dwarfs in the Solar neighborhood. The observed sources were chosen to cover a wide range of physical characteristics - spectral type, rotation, age, binarity, and X-ray and H\alpha activity - to determine the role of these properties in the production of radio emission, and hence magnetic fields. Three of the twelve sources, TVLM513-46546, 2MASS J0036159+182110, and BRI0021-0214, were observed to flare and also exhibit persistent emission, indicating that magnetic activity is not quenched at the bottom of the main sequence. The radio emission extends to spectral type L3.5, and there is no apparent decrease in the ratio of flaring luminosities to bolometric luminosities between M8-L3.5. Moreover, contrary to the significant drop in persistent H\alpha activity beyond spectral type M7, the persistent radio activity appears to steadily increase between M3-L3.5. Similarly, the radio emission from BRI0021-0214 violates the phenomenological relations between the radio and X-ray luminosities of coronally active stars, hinting that radio and X-ray activity are also uncorrelated at the bottom of the main sequence. The radio active sources that have measured rotational velocities are rapid rotators, Vsin(i)>30 km/sec, while the upper limits on radio activity in slowly-rotating late M dwarfs (Vsin(i)<10 km/sec) are lower than these detections. These observations provide tantalizing evidence that rapidly-rotating late M and L dwarfs are more likely to be radio active. This possible correlation is puzzling given that the observed radio emission requires sustained magnetic fields of 10-1000 G and densities of 10^12 cm^-3, indicating that the active sources should have slowed down considerably due to magnetic braking.Comment: Accepted to ApJ; Two new figures; Minor text revision

    Chaotic Orbits in Thermal-Equilibrium Beams: Existence and Dynamical Implications

    Full text link
    Phase mixing of chaotic orbits exponentially distributes these orbits through their accessible phase space. This phenomenon, commonly called ``chaotic mixing'', stands in marked contrast to phase mixing of regular orbits which proceeds as a power law in time. It is operationally irreversible; hence, its associated e-folding time scale sets a condition on any process envisioned for emittance compensation. A key question is whether beams can support chaotic orbits, and if so, under what conditions? We numerically investigate the parameter space of three-dimensional thermal-equilibrium beams with space charge, confined by linear external focusing forces, to determine whether the associated potentials support chaotic orbits. We find that a large subset of the parameter space does support chaos and, in turn, chaotic mixing. Details and implications are enumerated.Comment: 39 pages, including 14 figure

    Candidate molecular ions for an electron electric dipole moment experiment

    Get PDF
    This paper is a theoretical work in support of a newly proposed experiment (R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises greater sensitivity to measurements of the electron's electric dipole moment (EDM) based on the trapping of molecular ions. Such an experiment requires the choice of a suitable molecule that is both experimentally feasible and possesses an expectation of a reasonable EDM signal. We find that the molecular ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet Delta states. In particular, we anticipate that the effective electric fields generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and -18 GV/cm respectively. As a byproduct of this discussion, we also explain how to make estimates of the size of the effective electric field acting in a molecule, using commercially available, nonrelativistic molecular structure software.Comment: 25 pages, 3 figures, submitted to Physical Review

    Berry-Like Phases in Structured Atoms and Molecules

    Get PDF
    Quantum mechanical phases arising from a periodically varying Hamiltonian are considered. These phases are derived from the eigenvalues of a stationary, “dressed” Hamiltonian that is able to treat internal atomic or molecular structure in addition to the time variation. In the limit of an adiabatic time variation, the usual Berry phase is recovered. For more rapid variation, nonadiabatic corrections to the Berry phase are recovered in perturbation theory, and their explicit dependence on internal structure emerges. Simple demonstrations of this formalism are given, to particles containing interacting spins, and to molecules in electric fields

    Stability of fermionic Feshbach molecules in a Bose-Fermi mixture

    Full text link
    In the wake of successful experiments in Fermi condensates, experimental attention is broadening to study resonant interactions in degenerate Bose-Fermi mixtures. Here we consider the properties and stability of the fermionic molecules that can be created in such a mixture near a Feshbach resonance (FR). To do this, we consider the two-body scattering matrix in the many-body environment, and assess its complex poles. The stability properties of these molecules strongly depend on their centre-of-mass motion, because they must satisfy Fermi statistics. At low centre-of-mass momenta the molecules are more stable than in the absence of the environment (due to Pauli-blocking effects), while at high centre-of-mass momenta nontrivial many body effects render them somewhat less stable

    Inhibition of VEGF and Angiopoietin-2 to Reduce Brain Metastases of Breast Cancer Burden

    Get PDF
    For metastases in the central nervous system, angiogenesis enhances metastatic potential and promotes progression. Primary factors which drive vessel growth are vascular endothelial growth factor (VEGF) and angiopoietin-2. Preclinical models show inhibition of either factor reduces metastases spread and inhibits growth. This work sets out to answer two questions in a preclinical mouse model. First, whether the combined inhibition of VEGF and angiopoietin-2, reduces passive permeability and limits drug uptake into brain metastases; and second, whether this inhibition reduces metastases burden in brain. We observed combinatorial inhibition of VEGF and angiopoietin-2, decreased (p \u3c 0.05) angiogenesis and vascular branching in an aortic ring assay and decreased (p \u3c 0.05) endothelial wound closure times. Using a brain metastases of breast cancer model (induced by intracardiac injections of brain seeking MDA-MB-231Br cells or 4T1Br cells), we observed, similar to VEGF, angiopoetin-2 expression correlates to increased angiogenesis (p \u3c 0.05) and increased lesion permeability. To determine efficacy, animals were administered bevacizumab plus L1-10 (angiopoietin inhibitor) twice per week until neurological symptoms developed. Lesion permeability significantly decreased by ∼50% (p \u3c 0.05) compared to untreated lesions, but remained ∼25% greater (p \u3c 0.0%) than brain. In subsequent experiments, animals were administered similar regimens but sacrificed on day 32. The number of metastatic lesions developed was significantly (p \u3c 0.001) reduced in the bevacizumab group (56%) and combination group (86%). Lesions’ size was reduced in bevacizumab treated lesions (∼67%) and bevacizumab and L1-10 treated lesions (∼78%) developing area \u3c 0.5 mm2. In summary, combinatorial inhibition of VEGF and angiopoietin reduces lesion permeability and brain metastatic burden

    Ultracold collisions of oxygen molecules

    Full text link
    Collision cross sections and rate constants between two ground- state oxygen molecules are investigated theoretically at translational energies below 1\sim 1K and in zero magnetic field. We present calculations for elastic and spin- changing inelastic collision rates for different isotopic combinations of oxygen atoms as a prelude to understanding their collisional stability in ultracold magnetic traps. A numerical analysis has been made in the framework of a rigid- rotor model that accounts fully for the singlet, triplet, and quintet potential energy surfaces in this system. The results offer insights into the effectiveness of evaporative cooling and the properties of molecular Bose- Einstein condensates, as well as estimates of collisional lifetimes in magnetic traps. Specifically, 17O2^{17}O_{2} looks like a good candidate for ultracold studies, while 16O2^{16}O_{2} is unlikely to survive evaporative cooling. Since 17O2^{17}O_{2} is representative of a wide class of molecules that are paramagnetic in their ground state we conclude that many molecules can be successfully magnetically trapped at ultralow temperatures.Comment: 15 pages, 9 figure

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure

    Loss of molecules in magneto-electrostatic traps due to nonadiabatic transitions

    Full text link
    We analyze the dynamics of a paramagnetic, dipolar molecule in a generic "magneto-electrostatic'' trap where both magnetic and electric fields may be present. The potential energy that governs the dynamics of the molecules is found using a reduced molecular model that incorporates the main features of the system. We discuss the shape of the trapping potentials for different field geometries, as well as the possibility of nonadiabatic transitions to untrapped states, i.e., the analog of Majorana transitions in a quadrupole magnetic atomic trap. Maximizing the lifetime of molecules in a trap is of great concern in current experiments, and we assess the effect of nonadiabatic transitions on obtainable trap lifetimes.Comment: 13 pages, 6 figure
    corecore