3,665 research outputs found

    Electric field suppression of ultracold confined chemical rates

    Full text link
    We consider ultracold collisions of polar molecules confined in a one dimensional optical lattice. Using a quantum scattering formalism and a frame transformation method, we calculate elastic and chemical quenching rate constants for fermionic molecules. Taking KRb molecules as a prototype, we find that the rate of quenching collisions is enhanced at zero electric field as the confinement is increased, but that this rate is suppressed when the electric field is turned on. For molecules with 500 nK of collision energy, for realistic molecular densities, and for achievable experimental electric fields and trap confinements, we predict lifetimes of KRb molecules of 1 s. We find a ratio of elastic to quenching collision rates of about 100, which may be sufficient to achieve efficient experimental evaporative cooling of polar KRb molecules.Comment: 4 pages, 3 figure

    A Simple Quantum Model of Ultracold Polar Molecule Collisions

    Full text link
    We present a unified formalism for describing chemical reaction rates of trapped, ultracold molecules. This formalism reduces the scattering to its essential features, namely, a propagation of the reactant molecules through a gauntlet of long-range forces before they ultimately encounter one another, followed by a probability for the reaction to occur once they do. In this way, the electric-field dependence should be readily parametrized in terms of a pair of fitting parameters (along with a C6C_6 coefficient) for each asymptotic value of partial wave quantum numbers ∣L,M⟩|L,M \rangle. From this, the electric field dependence of the collision rates follows automatically. We present examples for reactive species such as KRb, and non-reactive species, such as RbCs
    • …
    corecore