2,767 research outputs found

    A Simple Quantum Model of Ultracold Polar Molecule Collisions

    Full text link
    We present a unified formalism for describing chemical reaction rates of trapped, ultracold molecules. This formalism reduces the scattering to its essential features, namely, a propagation of the reactant molecules through a gauntlet of long-range forces before they ultimately encounter one another, followed by a probability for the reaction to occur once they do. In this way, the electric-field dependence should be readily parametrized in terms of a pair of fitting parameters (along with a C6C_6 coefficient) for each asymptotic value of partial wave quantum numbers ∣L,M⟩|L,M \rangle. From this, the electric field dependence of the collision rates follows automatically. We present examples for reactive species such as KRb, and non-reactive species, such as RbCs

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier

    Pair Wave Functions in Atomic Fermi Condensates

    Full text link
    Recent experiments have observed condensation behavior in a strongly interacting system of fermionic atoms. We interpret these observations in terms of a mean-field version of resonance superfluidity theory. We find that the objects condensed are not bosonic molecules composed of bound fermion pairs, but are rather spatially correlated Cooper pairs whose coherence length is comparable to the mean spacing between atoms. We propose experiments that will help to further probe these novel pairs

    Dipolar Bose gases: Many-body versus mean-field description

    Full text link
    We characterize zero-temperature dipolar Bose gases under external spherical confinement as a function of the dipole strength using the essentially exact many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering length with the dipole strength is accounted for properly. Our calculations suggest stability diagrams and collapse mechanisms of dipolar Bose gases that differ significantly from those previously proposed in the literature

    Observation of Heteronuclear Feshbach Resonances in a Bose-Fermi Mixture

    Full text link
    Three magnetic-field induced heteronuclear Feshbach resonances were identified in collisions between bosonic 87Rb and fermionic 40K atoms in their absolute ground states. Strong inelastic loss from an optically trapped mixture was observed at the resonance positions of 492, 512, and 543 +/- 2 G. The magnetic-field locations of these resonances place a tight constraint on the triplet and singlet cross-species scattering lengths, yielding -281 +/- 15 Bohr and -54 +/- 12 Bohr, respectively. The width of the loss feature at 543 G is 3.7 +/- 1.5 G wide; this broad Feshbach resonance should enable experimental control of the interspecies interactions.Comment: revtex4 + 5 EPS figure
    • …
    corecore