9,055 research outputs found

    Quantum initial value representations using approximate Bohmian trajectories

    Full text link
    Quantum trajectories, originating from the de Broglie-Bohm (dBB) hydrodynamic description of quantum mechanics, are used to construct time-correlation functions in an initial value representation (IVR). The formulation is fully quantum mechanical and the resulting equations for the correlation functions are similar in form to their semi-classical analogs but do not require the computation of the stability or monodromy matrix or conjugate points. We then move to a {\em local} trajectory description by evolving the cumulants of the wave function along each individual path. The resulting equations of motion are an infinite hierarchy, which we truncate at a given order. We show that time-correlation functions computed using these approximate quantum trajectories can be used to accurately compute the eigenvalue spectrum for various potential systems.Comment: 7 pages, 6 figure

    Resonances, Unstable Systems and Irreversibility: Matter Meets Mind

    Full text link
    The fundamental time-reversal invariance of dynamical systems can be broken in various ways. One way is based on the presence of resonances and their interactions giving rise to unstable dynamical systems, leading to well-defined time arrows. Associated with these time arrows are semigroups bearing time orientations. Usually, when time symmetry is broken, two time-oriented semigroups result, one directed toward the future and one directed toward the past. If time-reversed states and evolutions are excluded due to resonances, then the status of these states and their associated backwards-in-time oriented semigroups is open to question. One possible role for these latter states and semigroups is as an abstract representation of mental systems as opposed to material systems. The beginnings of this interpretation will be sketched.Comment: 9 pages. Presented at the CFIF Workshop on TimeAsymmetric Quantum Theory: The Theory of Resonances, 23-26 July 2003, Instituto Superior Tecnico, Lisbon, Portugal; and at the Quantum Structures Association Meeting, 7-22 July 2004, University of Denver. Accepted for publication in the Internation Journal of Theoretical Physic

    The density matrix in the de Broglie-Bohm approach

    Full text link
    If the density matrix is treated as an objective description of individual systems, it may become possible to attribute the same objective significance to statistical mechanical properties, such as entropy or temperature, as to properties such as mass or energy. It is shown that the de Broglie-Bohm interpretation of quantum theory can be consistently applied to density matrices as a description of individual systems. The resultant trajectories are examined for the case of the delayed choice interferometer, for which Bell appears to suggest that such an interpretation is not possible. Bell's argument is shown to be based upon a different understanding of the density matrix to that proposed here.Comment: 15 pages, 4 figure

    Irreversible Quantum Mechanics in the Neutral K-System

    Get PDF
    The neutral Kaon system is used to test the quantum theory of resonance scattering and decay phenomena. The two dimensional Lee-Oehme-Yang theory with complex Hamiltonian is obtained by truncating the complex basis vector expansion of the exact theory in Rigged Hilbert space. This can be done for K_1 and K_2 as well as for K_S and K_L, depending upon whether one chooses the (self-adjoint, semi-bounded) Hamiltonian as commuting or non-commuting with CP. As an unexpected curiosity one can show that the exact theory (without truncation) predicts long-time 2 pion decays of the neutral Kaon system even if the Hamiltonian conserves CP.Comment: 36 pages, 1 PostScript figure include
    • …
    corecore