13 research outputs found
Adaptive modeling of plate structures
V disertaciji se ukvarjamo z različnimi vidiki modeliranja ploskovnih konstrukcij s končnimi elementi. Modeliranje plošč je nekoliko specifično in je zaradi kompleksnosti in pojavov, ki jih opisuje, bistveno prispevalo k razvoju same metode končnih elementov. Danes je na voljo več uveljavljenih modelov plošč in pripadajočih končnih elementov, ki uporabniku nudijo široko množico možnosti, iz katere lahko izbira. Prav široka možnost izbire predstavlja tudi največjo težavo, saj je težje določiti, kateri model je primernejši in tudi, katera mreža končnih elementov je za dan problem optimalna. Glavni cilj disertacije je raziskati ključne korake v procesu prilagodljivega modeliranja plošč, ki omogoča samodejno določitev optimalnega modela za dan problem. Ker je prilagodljivo modeliranje odvisno od zanesljivih ocen napak, je večji del disertacije posvečen metodam za izračun diskretizacijske in modelske napake. Na praktičnih primerih smo preučili nekaj najbolj uveljavljenih metod za oceno napake. V nasprotju z ocenami napake diskretizacije, je modelsko napako mnogo težje določiti. Posebna pozornost je bila zato namenjena metodi uravnoteženja rezidualov, ki ima potencial tudi na področju ocene modelske napake. V tem smislu to delo predstavlja pomemben prispevek k področju računanja modelske napake za plošče. Koncept prilagodljivega modeliranja ploskovnih konstrukcij je bil preskušen na hierarhični družini končnih elementov za plošče - od tankih plošč do modelov višjega reda, ki upoštevajo deformacije po debelini. Ravno dobro vzpostavljena hierarhija v družini končnih elementov se je pokazala za ključno pri zanesljivi oceni modelske napake. Prilagodljivo modeliranje ploskovnih konstrukcije je bilo preskušeno na nekaj zahtevnejših primerih. Območje je bilo najprej modeliranjo z najbolj grobim modelom na sorazmerno redki mreži. Z uporabo informacije o napaki začetnega izračuna je bil zgrajen nov model. Primerjava izračuna na novem modelu z začetnim računom je pokazala, da je predlagan način prilagodljivega modeliranja sposoben nadzorovati porazdelitev napake, kakor tudi zajeti vse pomembnejše po- jave, ki so značilni za modeliranje plošč.The thesis deals with adaptive finite element modeling of plate structures. The finite element modeling of plates has grown to a mature research topic, which has contributed significantly to the development of the finite element method for structural analysis due to its complexity and inherently specific issues. At present, several validated plate models and corresponding families of working and efficient finite elements are available, offering a sound basis for an engineer to choose from. In our opinion, the main problems in the finite modeling of plates are nowadays related to the adaptive modeling. Adaptive modeling should reach much beyond standard discretization (finite element mesh) error estimates and related mesh (discretization) adaptivity. It should also include model error estimates and model adaptivity, which should provide the most appropriate mathematical model for a specific region of a structure. Thus in this work we study adaptive modeling for the case of plates. The primary goal of the thesis is to provide some answers to the questions related to the key steps in the process of adaptive modeling of plates. Since the adaptivity depends on reliable error estimates, a large part of the thesis is related to the derivation of computational procedures for discretization error estimates as well as model error estimates. A practical comparison of some of the established discretization error estimates is made. Special attention is paid to what is called equilibrated residuum method, which has a potential to be used both for discretization error and model error estimates. It should be emphasized that the model error estimates are quite hard to obtain, in contrast to the discretization error estimates. The concept of model adaptivity for plates is in this work implemented on the basis of equilibrated residuum method and hierarchic family of plate finite element models. The finite elements used in the thesis range from thin plate finite elements to thick plate finite elements. The latter are based on a newly derived higher order plate theory, which includes through the thickness stretching. The model error is estimated by local element-wise compu- tations. As all the finite elements, representing the chosen plate mathematical models, are re-derived in order to share the same interpolation bases, the difference between the local com- putations can be attributed mainly to the model error. This choice of finite elements enables effective computation of the model error estimate and improves the robustness of the adaptive modeling. Thus the discretization error can be computed by an independent procedure. Many numerical examples are provided as an illustration of performance of the derived plate elements, the derived discretization error procedures and the derived modeling error procedure. Since the basic goal of modeling in engineering is to produce an effective model, which will produce the most accurate results with the minimum input data, the need for the adaptive modeling will always be present. In this view, the present work is a contribution to the final goal of the finite element modeling of plate structures: a fully automatic adaptive procedure for the construction of an optimal computational model (an optimal finite element mesh and an optimal choice of a plate model for each element of the mesh) for a given plate structure. vii
On Prediction of 3d Stress State in Elastic Shell by Higher-order Shell Formulations
In this work we study the accuracy of modem higher-order shell finite element formulations in computation of 3d stress state in elastic shells. In that sense we compare three higher-order shell models: (i) with seven dislacement-like kinematic parameters, and (ii, iii) with six displacement-like kinematic parameters plus one strain-like kinematic parameter introduced by two different versions of enhanced assumed strain (EAS) concept. The finite element approximations of all shell models are based on 4-node quadrilateral elements. Geometrically nonlinear and consistently linearized forms of considered formulations are given. Several numerical examples are presented, where computed stresses are compared with analytical solutions. It was found that through-the-thickness variation of some (non-dominant) stress tensor components, including through-the-thickness normal stress, may be computed very inaccurately. The reliable representation for those stresses can be interpreted only if the ``layer-wise'' averaging or the through-the-thickness averaging is performed
Model adaptivity for finite element analysis of thin or thick plates based on equilibrated boundary stress resultants
Purpose – The purpose of this paper is to address error-controlled adaptive finite element (FE) method for thin and thick plates. A procedure is presented for determining the most suitable plate model (among available hierarchical plate models) for each particular FE of the selected mesh, that is provided as the final output of the mesh adaptivity procedure. \ud
\ud
Design/methodology/approach – The model adaptivity procedure can be seen as an appropriate extension to model adaptivity for linear elastic plates of so-called equilibrated boundary traction approach error estimates, previously proposed for 2D/3D linear elasticity. Model error indicator is based on a posteriori element-wise computation of improved (continuous) equilibrated boundary stress resultants, and on a set of hierarchical plate models. The paper illustrates the details of proposed model adaptivity procedure for choosing between two most frequently used plate models: the one of Kirchhoff and the other of Reissner-Mindlin. The implementation details are provided for a particular case of the discrete Kirchhoff quadrilateral four-node plate FE and the corresponding Reissner-Mindlin quadrilateral with the same number of nodes. The key feature for those elements that they both provide the same quality of the discretization space (and thus the same discretization error) is the one which justifies uncoupling of the proposed model adaptivity from the mesh adaptivity. \ud
\ud
Findings – Several numerical examples are presented in order to illustrate a very satisfying performance of the proposed methodology in guiding the final choice of the optimal model and mesh in analysis of complex plate structures. \ud
\ud
Originality/value – The paper confirms that one can make an automatic selection of the most appropriate plate model for thin and thick plates on the basis of proposed model adaptivity procedure.\u
Adaptive analysis of plate structures
The thesis deals with adaptive finite element modeling of plate structures. The finite element modeling of plates has grown to a mature research topic, which has contributed significantly to the development of the finite element method for structural analysis due to its complexity and inherently specific issues. At present, several validated plate models and corresponding families of working and efficient finite elements are available, offering a sound basis for an engineer to choose from. In our opinion, the main problems in the finite modeling of plates are nowadays related to the adaptive modeling. Adaptive modeling should reach much beyond standard discretization (finite element mesh) error estimates and related mesh (discretization) adaptivity. It should also include model error estimates and model adaptivity, which should provide the most appropriate mathematical model for a specific region of a structure. Thus in this work we study adaptive modeling for the case of plates. The primary goal of the thesis is to provide some answers to the questions related to the key steps in the process of adaptive modeling of plates. Since the adaptivity depends on reliable error estimates, a large part of the thesis is related to the derivation of computational procedures for discretization error estimates as well as model error estimates. A practical comparison of some of the established discretization error estimates is made. Special attention is paid to what is called equilibrated residuum method, which has a potential to be used both for discretization error and model error estimates. It should be emphasized that the model error estimates are quite hard to obtain, in contrast to the discretization error estimates. The concept of model adaptivity for plates is in this work implemented on the basis of equilibrated residuum method and hierarchic family of plate finite element models. The finite elements used in the thesis range from thin plate finite elements to thick plate finite elements. The latter are based on a newly derived higher order plate theory, which includes through the thickness stretching. The model error is estimated by local element-wise compu- tations. As all the finite elements, representing the chosen plate mathematical models, are re-derived in order to share the same interpolation bases, the difference between the local com- putations can be attributed mainly to the model error. This choice of finite elements enables effective computation of the model error estimate and improves the robustness of the adaptive modeling. Thus the discretization error can be computed by an independent procedure. Many numerical examples are provided as an illustration of performance of the derived plate elements, the derived discretization error procedures and the derived modeling error procedure. Since the basic goal of modeling in engineering is to produce an effective model, which will produce the most accurate results with the minimum input data, the need for the adaptive modeling will always be present. In this view, the present work is a contribution to the final goal of the finite element modeling of plate structures: a fully automatic adaptive procedure for the construction of an optimal computational model (an optimal finite element mesh and an optimal choice of a plate model for each element of the mesh) for a given plate structure. vii
Comprehensive permanent remote monitoring system of a multi-span highway bridge
As part of the reconstruction of a multi-span viaduct on a Slovenian highway, a permanent remote monitoring system with over 200 sensors was established. Several parameters are monitored on different parts of the viaduct by means of temperature sensors, accelerometers, strain gauges, long-gauge deformation and Fibre Bragg Grating (FBG) sensors. In this way strains, frequencies and temperatures on external prestressed beam cables, carbon fibre rebarsused for the flexural strengthening of a deck overhang, pier caps and prestressed beams are measured and stored into the on-site central data acquisition system. This paper presents architecture of the permanent bridge monitoring system and preliminary results of the measurements
Numerical model of temperature influence on deformation measurements
V prispevku je predstavljen izviren način za napoved odvisnosti izmerjenih deformacij od temperature okolice. Izhaja iz poenostavljenega fizikalnega modela, ki je umerjen s pomočjo niza obstoječih meritev, ki pokrivajo časovni razpon enega leta. Spremljanje konstrukcijskega stanja zvonika stolnice sv. Anastazije v Zadru je bilo opravljeno z namenom, da bi zanesljivo določili morebitne dolgotrajne trende obnašanja in tako omogočili pravočasno ukrepanje. Za uspešno določitev dolgotrajnih trendov je ključna ločitev temperaturnega vpliva na meritve. Rezultati kažejo, da je mogoče na predstavljeni način dokaj dobro izločiti temperaturni vpliv na meritve in tako izboljšati zaznavo morebitnih dolgotrajnih trendov.The paper presents an original method for predicting the dependence of measured deformations on ambient temperature. It is derived from a physical model calibrated using a set of existing measurements covering the time span of one year. The aim of the structural health monitoring of the bell tower of the Cathedral of St. Anastasia in Zadar was to reliably determine any long-term trends in behavior and thus enable timely planning of interventions. Separating the effects of temperature on measurements is key to successfully determining long-term trends. The results show that the temperature influence on the measurements can be eliminated well in the presented way
Modélisation adaptive des structures
The primary goal of the thesis is to provide some answers to the questions related to the key steps in the process of adaptive modeling of plates. Since the adaptivity depends on reliable error estimates, a large part of the thesis is related to the derivation of computational procedures for discretization error estimates as well as model error estimates. A practical comparison of some of the established discretization error estimates is made. Special attention is paid to what is called equilibrated residuum method, which has a potential to be used both for discretization error and model error estimates. It should be emphasized that the model error estimates are quite hard to obtain, in contrast to the discretization error estimates. The concept of model adaptivity for plates is in this work implemented on the basis of equilibrated residuum method and hierarchic family of plate finite element models.The finite elements used in the thesis range from thin plate finite elements to thick plate finite elements. The latter are based on a newly derived higher order plate theory, which includes through the thickness stretching. The model error is estimated by local element-wise computations. As all the finite elements, representing the chosen plate mathematical models, are re-derived in order to share the same interpolation bases, the difference between the local computations can be attributed mainly to the model error. This choice of finite elements enables effective computation of the model error estimate and improves the robustness of the adaptive modeling. Thus the discretization error can be computed by an independent procedure.Many numerical examples are provided as an illustration of performance of the derived plate elements, the derived discretization error procedures and the derived modeling error procedure. Since the basic goal of modeling in engineering is to produce an effective model, which will produce the most accurate results with the minimum input data, the need for the adaptive modeling will always be present. In this view, the present work is a contribution to the final goal of the finite element modeling of plate structures: a fully automatic adaptive procedure for the construction of an optimal computational model (an optimal finite element mesh and an optimal choice of a plate model for each element of the mesh) for a given plate structure.L’objectif principal de la thèse est de répondre à des questions liées aux étapes clé d’un processus de l’adaptation de modèles de plaques. Comme l’adaptativité dépend des estimateurs d’erreurs fiables, une part importante du rapport est dédiée au développement des méthodes numériques pour les estimateurs d’erreurs aussi bien dues à la discrétisation qu’au choix du modèle. Une comparaison des estimateurs d’erreurs de discrétisation d’un point de vue pratique est présentée. Une attention particulière est prêtée a la méthode de résiduels équilibrés (en anglais, "equilibrated residual method"), laquelle est potentiellement applicable aux estimations des deux types d’erreurs, de discrétisation et de modèle.Il faut souligner que, contrairement aux estimateurs d’erreurs de discrétisation, les estimateurs d’erreur de modèle sont plus difficiles à élaborer. Le concept de l’adaptativité de modèles pour les plaques est implémenté sur la base de la méthode de résiduels équilibrés et de la famille hiérarchique des éléments finis de plaques. Les éléments finis dérivés dans le cadre de la thèse, comprennent aussi bien les éléments de plaques minces et que les éléments de plaques épaisses. Ces derniers sont formulés en s’appuyant sur une théorie nouvelle de plaque, intégrant aussi les effets d’étirement le long de l’épaisseur. Les erreurs de modèle sont estimées via des calculs élément par élément. Les erreurs de discrétisation et de modèle sont estimées d’une manière indépendante, ce qui rend l’approche très robuste et facile à utiliser. Les méthodes développées sont appliquées sur plusieurs exemples numériques. Les travaux réalisés dans le cadre de la thèse représentent plusieurs contributions qui visent l’objectif final de la modélisation adaptative, ou une procédure complètement automatique permettrait de faire un choix optimal du modèle de plaques pour chaque élément de la structure
On Prediction of 3d Stress State in Elastic Shell by Higher-order Shell Formulations
In this work we study the accuracy of modem higher-order shell finite element formulations in computation of 3d stress state in elastic shells. In that sense we compare three higher-order shell models: (i) with seven dislacement-like kinematic parameters, and (ii, iii) with six displacement-like kinematic parameters plus one strain-like kinematic parameter introduced by two different versions of enhanced assumed strain (EAS) concept. The finite element approximations of all shell models are based on 4-node quadrilateral elements. Geometrically nonlinear and consistently linearized forms of considered formulations are given. Several numerical examples are presented, where computed stresses are compared with analytical solutions. It was found that through-the-thickness variation of some (non-dominant) stress tensor components, including through-the-thickness normal stress, may be computed very inaccurately. The reliable representation for those stresses can be interpreted only if the ``layer-wise\u27\u27 averaging or the through-the-thickness averaging is performed
Model adaptivity for finite element analysis of thin or thick plates based on equilibrated boundary stress resultants
Purpose – The purpose of this paper is to address error-controlled adaptive finite element (FE) method for thin and thick plates. A procedure is presented for determining the most suitable plate model (among available hierarchical plate models) for each particular FE of the selected mesh, that is provided as the final output of the mesh adaptivity procedure.
Design/methodology/approach – The model adaptivity procedure can be seen as an appropriate extension to model adaptivity for linear elastic plates of so-called equilibrated boundary traction approach error estimates, previously proposed for 2D/3D linear elasticity. Model error indicator is based on a posteriori element-wise computation of improved (continuous) equilibrated boundary stress resultants, and on a set of hierarchical plate models. The paper illustrates the details of proposed model adaptivity procedure for choosing between two most frequently used plate models: the one of Kirchhoff and the other of Reissner-Mindlin. The implementation details are provided for a particular case of the discrete Kirchhoff quadrilateral four-node plate FE and the corresponding Reissner-Mindlin quadrilateral with the same number of nodes. The key feature for those elements that they both provide the same quality of the discretization space (and thus the same discretization error) is the one which justifies uncoupling of the proposed model adaptivity from the mesh adaptivity.
Findings – Several numerical examples are presented in order to illustrate a very satisfying performance of the proposed methodology in guiding the final choice of the optimal model and mesh in analysis of complex plate structures.
Originality/value – The paper confirms that one can make an automatic selection of the most appropriate plate model for thin and thick plates on the basis of proposed model adaptivity procedure
Modélisation adaptive des structures
L objectif principal de la thèse est de répondre à des questions liées aux étapes clé d un processus de l adaptation de modèles de plaques. Comme l adaptativité dépend des estimateurs d erreurs fiables, une part importante du rapport est dédiée au développement des méthodes numériques pour les estimateurs d erreurs aussi bien dues à la discrétisation qu au choix du modèle. Une comparaison des estimateurs d erreurs de discrétisation d un point de vue pratique est présentée. Une attention particulière est prêtée a la méthode de résiduels équilibrés (en anglais, "equilibrated residual method"), laquelle est potentiellement applicable aux estimations des deux types d erreurs, de discrétisation et de modèle.Il faut souligner que, contrairement aux estimateurs d erreurs de discrétisation, les estimateurs d erreur de modèle sont plus difficiles à élaborer. Le concept de l adaptativité de modèles pour les plaques est implémenté sur la base de la méthode de résiduels équilibrés et de la famille hiérarchique des éléments finis de plaques. Les éléments finis dérivés dans le cadre de la thèse, comprennent aussi bien les éléments de plaques minces et que les éléments de plaques épaisses. Ces derniers sont formulés en s appuyant sur une théorie nouvelle de plaque, intégrant aussi les effets d étirement le long de l épaisseur. Les erreurs de modèle sont estimées via des calculs élément par élément. Les erreurs de discrétisation et de modèle sont estimées d une manière indépendante, ce qui rend l approche très robuste et facile à utiliser. Les méthodes développées sont appliquées sur plusieurs exemples numériques. Les travaux réalisés dans le cadre de la thèse représentent plusieurs contributions qui visent l objectif final de la modélisation adaptative, ou une procédure complètement automatique permettrait de faire un choix optimal du modèle de plaques pour chaque élément de la structure.The primary goal of the thesis is to provide some answers to the questions related to the key steps in the process of adaptive modeling of plates. Since the adaptivity depends on reliable error estimates, a large part of the thesis is related to the derivation of computational procedures for discretization error estimates as well as model error estimates. A practical comparison of some of the established discretization error estimates is made. Special attention is paid to what is called equilibrated residuum method, which has a potential to be used both for discretization error and model error estimates. It should be emphasized that the model error estimates are quite hard to obtain, in contrast to the discretization error estimates. The concept of model adaptivity for plates is in this work implemented on the basis of equilibrated residuum method and hierarchic family of plate finite element models.The finite elements used in the thesis range from thin plate finite elements to thick plate finite elements. The latter are based on a newly derived higher order plate theory, which includes through the thickness stretching. The model error is estimated by local element-wise computations. As all the finite elements, representing the chosen plate mathematical models, are re-derived in order to share the same interpolation bases, the difference between the local computations can be attributed mainly to the model error. This choice of finite elements enables effective computation of the model error estimate and improves the robustness of the adaptive modeling. Thus the discretization error can be computed by an independent procedure.Many numerical examples are provided as an illustration of performance of the derived plate elements, the derived discretization error procedures and the derived modeling error procedure. Since the basic goal of modeling in engineering is to produce an effective model, which will produce the most accurate results with the minimum input data, the need for the adaptive modeling will always be present. In this view, the present work is a contribution to the final goal of the finite element modeling of plate structures: a fully automatic adaptive procedure for the construction of an optimal computational model (an optimal finite element mesh and an optimal choice of a plate model for each element of the mesh) for a given plate structure.CACHAN-ENS (940162301) / SudocSudocFranceF