114 research outputs found

    Međudjelovanje nabijenih makroiona putem štapićastih nabijenih molekula

    Get PDF
    A short review of recent theoretical advances in studies of the interaction between highly charged systems embedded in a solution of rod-like molecules is presented. The system is theoretically described by the functional density theory, where the correlations within the rod-like molecules are accounted for. We show that for sufficiently long molecules and large surface charge densities, an attractive force between like-charged surfaces arises due to the spatially distributed charges within the molecules. The added salt has an influence on the condition for the attractive force between like-charged surfaces. The theoretical results are compared with Monte Carlo simulations. Many phenomena motivate the study of the interaction between like-charged surfaces (DNA condensation, virus aggregation, yeast flocculation, cohesion of cement paste).Predstavljen je kratak pregled nedavnih teorijskih dostignuća u istraživanju međudjelovanja nabijenih sustava u otopini štapićastih molekula. Sustav je opisan teorijom funkcionala gustoće uzevši u obzir odnose među štapićastim molekulama. Pokazano je da se u slučaju dovoljno dugačkih molekula i velike površinske gustoće naboja javlja privlačna sila između nabijenih ploha zbog prostornog rasporeda naboja u molekulama. Dodatak soli utječe na privlačnu silu među nabijenim plohama. Teorijski rezultati uspoređeni su sa simulacijama Monte-Carlo. Mnoge pojave potiču proučavanje međudjelovanja nabijenih površina (kondenzacija DNA, agregacija virusa, flokulacija kvasca, povezivanje cementne paste

    Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores

    Get PDF
    We characterize the role of electrostatic fluctuations on the charge selectivity of cylindrical nanopores confining electrolyte mixtures. To this end, we develop an extended one-loop theory that can account for correlation effects induced by the surface charge, nanoconfinement of the electrolyte, and interfacial polarization charges associated with the low permittivity membrane. We validate the quantitative accuracy of the theory by comparisons with previously obtained Monte-Carlo simulation data from the literature, and scrutinize in detail the underlying forces driving the ionic selectivity of the nanopore. In the biologically relevant case of electrolytes with divalent cations such as CaCl2 in negatively charged nanopores, electrostatic correlations associated with the dense counterion layer in the channel result in an increase of the pore coion density with the surface charge. This peculiarity analogous to the charge inversion phenomenon remains intact for dielectrically inhomogeneous pores, which indicates that the effect should be observable in nanofiltration membranes or DNA-blocked nanopores characterized by a low membrane permittivity. Our results show that a quantitatively accurate consideration of correlation effects is necessary to determine the ionic selectivity of nanopores in the presence of electrolytes with multivalent counterions.Peer reviewe

    Role of Multipoles in Counterion-Mediated Interactions between Charged Surfaces: Strong and Weak Coupling

    Full text link
    We present general arguments for the importance, or lack thereof, of the structure in the charge distribution of counterions for counterion-mediated interactions between bounding symmetrically charged surfaces. We show that on the mean field or weak coupling level, the charge quadrupole contributes the lowest order modification to the contact value theorem and thus to the intersurface electrostatic interactions. The image effects are non-existent on the mean-field level even with multipoles. On the strong coupling level the quadrupoles and higher order multipoles contribute additional terms to the interaction free energy only in the presence of dielectric inhomogeneities. Without them, the monopole is the only multipole that contributes to the strong coupling electrostatics. We explore the consequences of these statements in all their generality.Comment: 12 pages, 3 figure

    Interaction between macroions mediated by divalent rod-like ions

    Get PDF
    Attractive interactions between identical like-charged macroions in aqueous multivalent salt solution arise due to ion-ion correlations. The mean-field level Poisson-Boltzmann (PB) theory does not predict such behavior for point-like structureless ions. Various multivalent ions, such as certain DNA condensing agents or short stiff polyelectrolytes, do have an internal, often rod-like, structure. Applying PB theory to the generic case of divalent rod-like salt ions, we find attraction between like-charged macroions above a critical distance between the two individual charges of the rod-like ions. We calculate this distance analytically within linearized PB theory. Numerical results for the non-linear PB theory indicate strong enhancement of the tendency to mediate attractive interactions

    Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2

    Full text link
    The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L, \sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were measured from threshold up to an additional center of mass energy of 40 MeV, at a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a center of mass angle of \theta=90^\circ. By an additional out-of-plane measurement with polarized electrons \sigma_{LT'} was determined. This showed for the first time the cusp effect above the \pi^+ threshold in the imaginary part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory are in disagreement with these data. On the other hand, the data are somewhat better predicted by the MAID phenomenological model and are in good agreement with the dynamical model DMT.Comment: 6 pages, 4 figure

    A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV

    Full text link
    The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195 and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the transverse and longitudinal cross sections was performed. An effective Lagrangian model was used to extract the `axial mass' from experimental data. We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger than the axial mass known from neutrino scattering experiments. This is consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl

    High-precision Studies of the 3^{\bf{3}}He(e,e^{\bf{\prime}}p) Reaction at the Quasielastic Peak

    Full text link
    Precision studies of the reaction 3^{3}He(e,e^\primep) using the three-spectrometer facility at the Mainz microtron MAMI are presented. All data are for quasielastic kinematics at q=685|\vec{q} | =685 MeV/c. Absolute cross sections were measured at three electron kinematics. For the measured missing momenta range from 10 to 165 MeV/c, no strength is observed for missing energies higher than 20 MeV. Distorted momentum distributions were extracted for the two-body breakup and the continuum. The longitudinal and transverse behavior was studied by measuring the cross section for three photon polarizations. The longitudinal and transverse nature of the cross sections is well described by a currently accepted and widely used prescription of the off-shell electron-nucleon cross-section. The results are compared to modern three-body calculations and to previous data.Comment: 4 pages, 3 figures. Submitted for publication in Phys. Rev. Let

    Coherent \pi^0 threshold production from the deuteron at Q^2 = 0.1 GeV^2/c^2

    Full text link
    First data on coherent threshold \pi^0 electroproduction from the deuteron taken by the A1 Collaboration at the Mainz Microtron MAMI are presented. At a four-momentum transfer of q^2=-0.1 GeV^2/c^2 the full solid angle was covered up to a center-of-mass energy of 4 MeV above threshold. By means of a Rosenbluth separation the longitudinal threshold s wave multipole and an upper limit for the transverse threshold s wave multipole could be extracted and compared to predictions of Heavy Baryon Chiral Perturbation Theory.Comment: 7 pages, 7 figures, latex2

    Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance

    Full text link
    The recoil proton polarization has been measured in the p (\vec e,e'\vec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y = (-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
    corecore