48 research outputs found

    Astronomical calibration of the geological timescale: closing the middle Eocene gap

    Full text link
    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene–Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous–Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic

    A large-scale transcontinental river system crossed West Antarctica during the Eocene

    Get PDF
    Extensive ice coverage largely prevents investigations of Antarctica’s unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from >40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a >1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation

    Ice sheet–free West Antarctica during peak early Oligocene glaciation

    Get PDF
    One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change

    Transient deep ocean cooling in the eastern equatorial Pacific Ocean at the Eocene-Oligocene Transition

    Get PDF
    At the Eocene-Oligocene Transition (EOT), approximately 34 million years ago, Earth abruptly transitioned to a climate state sufficiently cool for Antarctica to sustain large ice sheets for the first time in tens to hundreds of millions of years. Oxygen isotope records from deep-sea benthic foraminifera (δ18Ob) provide the foundation of our understanding of this pivot point in Cenozoic climate history. A deeper insight, however, is hindered by the paucity of independent deep-sea temperature reconstructions and the ongoing challenge of deconvolving the temperature and continental ice volume signals embedded in δ18Ob records. Here we present records of deep-sea temperature change from the eastern equatorial Pacific for the EOT using clumped isotope thermometry, which permits explicit temperature reconstructions independent of seawater chemistry and continental ice volume. Our records suggest that the deep Pacific Ocean cooled markedly at the EOT by 4.7 ± 0.9°C. This decrease in temperature represents the first direct and robust evidence of deep-sea cooling associated with the inception of major Cenozoic glaciation. However, our data also indicate that this major cooling of the deep Pacific Ocean at the EOT was short-lived (∼200 kyrs), with temperatures rebounding to values close to pre-EOT levels by 33.6 Ma. Our calculated record of seawater δ18O suggests that this rebound in ocean temperature occurred despite the continued presence of a large-scale Antarctic ice sheet. This finding suggests a degree of decoupling between deep ocean temperatures in the eastern equatorial Pacific Ocean and the behavior of the newly established Antarctic ice sheet

    Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene-Oligocene transition

    Get PDF
    In conjunction with increasing benthic foraminiferal ?18O values at the Eocene–Oligocene transition (EOT; ca. 34 Ma), coarse-grained ice-rafted debris (IRD; >425 ?m) appears abruptly alongside fossil fish teeth with continentally derived neodymium (Nd) isotope ratios (?Nd) in Kerguelen Plateau (Southern Ocean) sediments. Increased Antarctic weathering flux, as inferred from two steps to less radiogenic ?Nd values, coincides with two steps in benthic foraminiferal ?18O values. These results indicate that two distinct surges of weathering were generated by East Antarctic ice growth during the EOT. Weathering by ice sheets during a precursor glaciation at 33.9 Ma did not produce significant IRD accumulation during the first ?Nd shift. Glacial weathering was sustained during a terrace interval between the two steps, probably by small high-elevation ice sheets. A large increase in weathering signals the rapid coalescence of small ice sheets into an ice sheet of continental proportions ca. 33.7 Ma. Rapid ice sheet expansion resulted in a suppression of weathering due to less exposed area and colder conditions. Parallel changes in Antarctic weathering flux and deep-sea carbonate accumulation suggest that ice-sheet expansion during the EOT had a direct impact on the global carbon cycle; possible mechanisms include associated changes in silicate weathering on the East Antarctic craton and enhanced fertilization of Southern Ocean waters, both of which warrant further investigation

    Expansion and diversification of high-latitude radiolarian assemblages in the late Eocene linked to a cooling event in the southwest Pacific

    Full text link
    The long-term cooling trend from middle to late Eocene was punctuated by several large-scale climate perturbations that culminated in a shift to "icehouse" climates at the Eocene–Oligocene transition. We present radiolarian micro-fossil assemblage and foraminiferal oxygen and carbon stable isotope data from Deep Sea Drilling Project (DSDP) sites 277, 280, 281, and 283 and Ocean Drilling Project (ODP) Site 1172 to identify significant oceanographic changes in the southwest Pacific through this climate transition (~ 40–30 Ma). We find that the Middle Eocene Climatic Optimum at ~ 40 Ma, which is truncated but identified by a negative shift in foraminiferal ?18O values at Site 277, is associated with a small increase in radiolarian taxa with low-latitude affinities (5 % of total fauna). In the early late Eocene at ~ 37 Ma, a positive oxygen isotope shift at Site 277 is correlated with the Priabonian Oxygen Isotope Maximum (PrOM). Radiolarian abundance, diversity, and preservation increase within this cooling event at Site 277 at the same time as diatom abundance. A negative ?18O excursion above the PrOM is correlated with a late Eocene warming event (~ 36.4 Ma). Radiolarian abundance and diversity decline within this event and taxa with low-latitude affinities reappear. Apart from this short-lived warming event, the PrOM and latest Eocene radiolarian assemblages are characterised by abundant high-latitude taxa. High-latitude taxa are also abundant during the late Eocene and early Oligocene (~ 38–30 Ma) at DSDP sites 280, 281, 283 and 1172 and are associated with very high diatom abundance. We therefore infer a northward expansion of high-latitude radiolarian taxa onto the Campbell Plateau in the latest Eocene. In the early Oligocene there is an overall decrease in radiolarian abundance and diversity at Site 277, and diatoms are scarce. These data indicate that, once the Antarctic Circumpolar Current was established in the early Oligocene (~ 30 Ma), a frontal system similar to present day developed, with nutrient-depleted Subantarctic waters bathing the area around DSDP Site 277, resulting in a more restricted siliceous plankton assemblage

    High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica.

    Full text link
    The highest resolution Holocene sediment core from the Antarctic Peninsula to date was collected during the first SHALDRIL cruise (NBP0502). Drilling yielded a 108.2-m-long core (87% recovery; site NBP0502–1B) from Maxwell Bay, South Shetland Islands. This high-resolution sediment record comes from a region that is currently experiencing dramatic climate change and associated glacial retreat. Such records can help to constrain the nature of past climate change and causal mechanisms, and to provide a context for evaluating current climate change and its impacts. The base of the drill site sampled till and/or proximal glacimarine sediments resting directly on bedrock. Glacimarine suspension deposits composed of dark greenish gray silty mud with variable diatom abundance and scattered very fine sand laminations make up the majority of the sedimentary section. Detailed sedimentological and geochemical analyses, including magnetic susceptibility, total organic carbon (TOC) content, carbon and nitrogen isotopic composition, pebble content, and biogenic silica content, allow subdivision of the glacimarine section into nine units, and seismic facies analyses resulted in the identification of six distinct seismic units. We used 29 radiocarbon ages to construct an age model and calculate sedimentation rates that vary by two orders of magnitude, from 0.7 mm/a to ?30 mm/a. Radiocarbon ages from glacimarine sediments just above the till date back to between 14.1 and 14.8 ka. Thus, ice was grounded in the fjord during the Last Glacial Maximum and eroded older sediments from the fjord. Following initial retreat of grounded ice from Maxwell Bay, the fjord was covered by a permanent floating ice canopy, probably an ice tongue. The highest sedimentation rate corresponds to an interval that contains abundant sand laminations and gravelly mud intervals and likely represents a melt-out phase or period of rapid glacial retreat from 10.1 ka to 8.2 ka. There is no evidence for an early Holocene climatic reversal, as recorded farther south at the Palmer Deep drill site. Minimum sea-ice cover and warm water conditions occurred between 8.2 and 5.9 ka. From 5.9 to 2.6 ka, there was a gradual cooling and more extensive sea-ice cover in the bay. After 2.6 ka, the climate varied slightly, causing only subtle variation in glacier grounding lines. There is no compelling evidence for a Little Ice Age readvance in Maxwell Bay. The current warming and associated glacial response in the northern Antarctic Peninsula appears to be unprecedented in its synchroneity and widespread impact. <br/

    Astronomical calibration of the geological timescale: closing the middle Eocene gap

    Full text link
    To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene–Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous–Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic
    corecore