16 research outputs found

    LiDAR-HMR: 3D Human Mesh Recovery from LiDAR

    Full text link
    In recent years, point cloud perception tasks have been garnering increasing attention. This paper presents the first attempt to estimate 3D human body mesh from sparse LiDAR point clouds. We found that the major challenge in estimating human pose and mesh from point clouds lies in the sparsity, noise, and incompletion of LiDAR point clouds. Facing these challenges, we propose an effective sparse-to-dense reconstruction scheme to reconstruct 3D human mesh. This involves estimating a sparse representation of a human (3D human pose) and gradually reconstructing the body mesh. To better leverage the 3D structural information of point clouds, we employ a cascaded graph transformer (graphormer) to introduce point cloud features during sparse-to-dense reconstruction. Experimental results on three publicly available databases demonstrate the effectiveness of the proposed approach. Code: https://github.com/soullessrobot/LiDAR-HMR/Comment: Code is available at: https://github.com/soullessrobot/LiDAR-HMR

    A Novel Prognostic Biomarker of Luminal Breast Cancer: High CD39 Expression Is Related to Poor Survival

    Get PDF
    BackgroundCD39 is one of the functional surface markers for T regulatory cells, the prognostic role and immune-related effects of CD39 in luminal breast cancer (BC) patients has not been evaluated yet. The aim of the current study was to explore the association between CD39 expression and clinic pathological characteristics and the prognosis in luminal BC patients.MethodsClinical information and RNA-sequencing (RNA-Seq) expression data were extracted from The Cancer Genome Atlas (TCGA). Patients were divided into a high or low CD39 expression group by the optimal cutoff value (4.18) identified from the receiver operating characteristic curve analysis. The relationships between CD39 expression and clinic pathological features were evaluated by the corresponding statistical tests. Survival analyses were applied to evaluate the overall survival between the high and low CD39 expression groups in luminal BC. Furthermore, Gene Expression Omnibus datasets were used for external data validation. Gene set enrichment analysis (GSEA) was also performed, and CIBERSORT was used to analyze the immune cell populations.ResultsAnalysis of 439 cases of tumor data showed that CD39 was overexpressed in luminal BC. The multivariable analysis suggested that CD39 expression was an independent prognostic factor for luminal BC patients. GSEA suggested that CD39 might play an important role in luminal BC progression through immune regulation. Analysis of immune cell patterns revealed high CD39 expression correlated to a higher proportion of CD8+ T cells and M2 macrophages.ConclusionThis study demonstrates that CD39 expression correlates with the prognosis of luminal BC through TCGA database mining. Further studies are warranted further to elucidate this potential novel therapeutic strategy for BC

    Knowledge, Attitudes, and Social Responsiveness Toward Corona Virus Disease 2019 (COVID-19) Among Chinese Medical Studentsβ€”Thoughts on Medical Education

    Get PDF
    Purpose: To assess knowledge, attitudes, and social responsiveness toward COVID-19 among Chinese medical students.Methods: Self-administered questionnaires were used to collect data from 889 medical students in three well-known Chinese medical universities. The questionnaire was comprised of three domains which consisted of demographic characteristic collection, seven items for knowledge, and eight items for attitudes and social responsiveness toward COVID-19. Data from different universities were lumped together and were divided into different groups to compare the differences, including (1) students at the clinical learning stage (Group A) or those at the basic-medicine stage (Group B) and (2) students who have graduated and worked (Group C) or those newly enrolled (Group D).Results: Medical students at group B had a weaker knowledge toward COVID-19 than did students at group A, especially in the question of clinical manifestations (p < 0.001). The percentage of totally correct answers of COVID-19 knowledge in group C was higher than that in Group D (p < 0.001). There were significant differences between groups C and D in the attitudes and social responsiveness toward COVID-19. Surprisingly, we found that the idea of newly enrolled medical students could be easily affected by interventions.Conclusions: In light of this information, medical education should pay attention not only to the cultivation of professional knowledge and clinical skills but also to the positive interventions to better the comprehensive qualities including communicative abilities and empathy

    Nlrp2, a Maternal Effect Gene Required for Early Embryonic Development in the Mouse

    Get PDF
    Maternal effect genes encode proteins that are produced during oogenesis and play an essential role during early embryogenesis. Genetic ablation of such genes in oocytes can result in female subfertility or infertility. Here we report a newly identified maternal effect gene, Nlrp2, which plays a role in early embryogenesis in the mouse. Nlrp2 mRNAs and their proteins (∼118 KDa) are expressed in oocytes and granulosa cells during folliculogenesis. The transcripts show a striking decline in early preimplantation embryos before zygotic genome activation, but the proteins remain present through to the blastocyst stage. Immunogold electron microscopy revealed that the NLRP2 protein is located in the cytoplasm, nucleus and close to nuclear pores in the oocytes, as well as in the surrounding granulosa cells. Using RNA interference, we knocked down Nlrp2 transcription specifically in mouse germinal vesicle oocytes. The knockdown oocytes could progress through the metaphase of meiosis I and emit the first polar body. However, the development of parthenogenetic embryos derived from Nlrp2 knockdown oocytes mainly blocked at the 2-cell stage. The maternal depletion of Nlrp2 in zygotes led to early embryonic arrest. In addition, overexpression of Nlrp2 in zygotes appears to lead to normal development, but increases blastomere apoptosis in blastocysts. These results provide the first evidence that Nlrp2 is a member of the mammalian maternal effect genes and required for early embryonic development in the mouse

    SCMA Codebook Design Based on Decomposition of the Superposed Constellation for AWGN Channel

    No full text
    In this study, we propose a method named decomposition of the superposed constellation (DCSC) to design sparse code multiple access (SCMA) codebooks for the additive white Gaussian noise (AWGN) channel. We prove that the power of the user symbols (USs) is accurately determined by the power of the superposed constellation (SC). Thus, we select quadrature amplitude modulation (QAM) constellations as the SC and decompose the SC into several groups of USs with power diversity. The minimum Euclidean distance (MED) between superposed symbols (SS-MED) in the receiver is determined by the selected QAM and MED between the multi-dimensional codewords (CW-MED) is optimized by matching the symbols on different dimensions. We propose a simplified DCSC (S-DCSC) by modifying the factor graph and avoiding the transmission of USs with low power, which greatly reduces the complexity of the message passing algorithm (MPA). The simulations show that the SS-MEDs of DCSC and S-DCSC are larger than those in previous papers and the BER performance of the proposed codebooks is better than others

    Research on transient heat transfer of ball valves in high-pressure liquid hydrogen receiving stations

    No full text
    As one of the most important fluid control devices in the liquid hydrogen receiving station, the liquid hydrogen ball valve's performance directly affects the system's stability. Aiming at the problem of insufficient cold shrinkage compensation ability of ball valve under high-temperature difference and excessive flow rate during the working process, a high-pressure liquid hydrogen hollow ball valve with elastic compensation ability is designed. Based on the conjugate heat transfer method, the transient conjugate heat transfer and transient thermal stress analysis were carried out on the high-pressure hollow ball valve of the liquid hydrogen receiving station. The results show that the transient temperature of each part of the ball valve decreases under different flow rates, and the closer to the flow part of the medium, the faster the cooling. In the initial stage, the larger the flow rate of liquid hydrogen, the greater the heat flux density of the fluid-solid interface, but after a certain period, the large flow rate is cooled to a greater extent, the heat transfer is weakened, and the heat flux density is smaller. Under different flow rates, the transient thermal stress of the key components of the ball valve first increases sharply and then decreases. At large flow rates, the temperature change is more obvious, and the maximum stress of each component increases. The research results have guiding significance for designing and applying ball valves in high-pressure liquid hydrogen receiving stations

    Understanding endometriosis from an immunomicroenvironmental perspective

    No full text
    Abstract. Endometriosis, a heterogeneous, inflammatory, and estrogen-dependent gynecological disease defined by the presence and growth of endometrial tissues outside the lining of the uterus, affects approximately 5-10% of reproductive-age women, causing chronic pelvic pain and reduced fertility. Although the etiology of endometriosis is still elusive, emerging evidence supports the idea that immune dysregulation can promote the survival and growth of retrograde endometrial debris. Peritoneal macrophages and natural killer (NK) cells exhibit deficient cytotoxicity in the endometriotic microenvironment, leading to inefficient eradication of refluxed endometrial fragments. In addition, the imbalance of T-cell subtypes results in aberrant cytokine production and chronic inflammation, which contribute to endometriosis development. Although it remains uncertain whether immune dysregulation represents an initial cause or merely a secondary enhancer of endometriosis, therapies targeting altered immune pathways exhibit satisfactory effects in preventing disease onset and progression. Here, we summarize the phenotypic and functional alterations of immune cells in the endometriotic microenvironment, focusing on their interactions with microbiota and endocrine and nervous systems, and how these interactions contribute to the etiology and symptomology of endometriosis

    Characterizing the Dissolution Rate of CO2-Brine in Porous Media under Gaseous and Supercritical Conditions

    No full text
    The CO2-brine dissolution homogenizes the distribution of residual CO2 and reduces the leakage risk in the saline aquifer. As a key parameter to immobilize the free CO2, the dissolution rate of CO2-brine could be accelerated through mechanisms like diffusion and dispersion, which are affected by the subsurface condition, pore structure, and background hydrological flow. This study contributed the calculated dissolution rates of both gaseous and supercritical CO2 during brine imbibition at a pore-scale. The flow development and distribution in porous media during dynamic dissolution were imaged in two-dimensional visualization using X-ray microtomography. The fingerings branching and expansion resulted in greater dissolution rates of supercritical CO2 with high contact between phases, while the brine bypassed the clusters of gaseous CO2 with a slower dissolution and longer duration due to the isolated bubbles. The dissolution rate of supercritical CO2 was about two or three orders of magnitude greater than that of gaseous CO2, while the value distributions both spanned about four orders of magnitude. The dissolution rates of gaseous CO2 increased with porosity, but the relationship was the opposite for supercritical CO2. CO2 saturation and the Reynolds number were analyzed to characterize the different impacts on gaseous and supercritical CO2 at different dissolution periods

    Group 2 innate lymphoid cells resolve neuroinflammation following cerebral ischaemia

    No full text
    Background Acute brain ischaemia elicits pronounced inflammation, which aggravates neural injury. However, the mechanisms governing the resolution of acute neuroinflammation remain poorly understood. In contrast to regulatory T and B cells, group 2 innate lymphoid cells (ILC2s) are immunoregulatory cells that can be swiftly mobilised without antigen presentation; whether and how these ILC2s participate in central nervous system inflammation following brain ischaemia is still unknown.Methods Leveraging brain tissues from patients who had an ischaemic stroke and a mouse model of focal ischaemia, we characterised the presence and cytokine release of brain-infiltrating ILC2s. The impact of ILC2s on neural injury was evaluated through antibody depletion and ILC2 adoptive transfer experiments. Using Rag2βˆ’/βˆ’Ξ³cβˆ’/βˆ’ mice receiving passive transfer of IL-4βˆ’/βˆ’ ILC2s, we further assessed the contribution of interleukin (IL)-4, produced by ILC2s, in ischaemic brain injury.Results We demonstrate that ILC2s accumulate in the areas surrounding the infarct in brain tissues of patients with cerebral ischaemia, as well as in mice subjected to focal cerebral ischaemia. Oligodendrocytes were a major source of IL-33, which contributed to ILC2s mobilisation. Adoptive transfer and expansion of ILC2s reduced brain infarction. Importantly, brain-infiltrating ILC2s reduced the magnitude of stroke injury severity through the production of IL-4.Conclusions Our findings revealed that brain ischaemia mobilises ILC2s to curb neuroinflammation and brain injury, expanding the current understanding of inflammatory networks following stroke
    corecore