90 research outputs found

    Elevated productivity during Oceanic Anoxic Event 2 in the Mentelle Basin, Western Australia (IODP Expedition 369), indicated by benthic foraminifera and geochemical proxies

    Get PDF
    This is the author accepted manuscript. The final version is available from the Grzybowski FoundationBritish Geological Survey (BGS

    Indonesian Throughflow drove Australian climate form humid Pliocene to arid Pleistocene

    Get PDF
    Late Miocene to mid-Pleistocene sedimentary proxy records reveal that northwest Australia underwent an abrupt transition from dry to humid climate conditions at 5.5 million years (Ma), likely receiving year-round rainfall, but after ~3.3 Ma, climate shifted toward an increasingly seasonal precipitation regime. The progressive constriction of the Indonesian Throughflow likely decreased continental humidity and transferred control of northwest Australian climate from the Pacific to the Indian Ocean, leading to drier conditions punctuated by monsoonal precipitation. The northwest dust pathway and fully established seasonal and orbitally controlled precipitation were in place by ~2.4 Ma, well after the intensification of Northern Hemisphere glaciation. The transition from humid to arid conditions was driven by changes in Pacific and Indian Ocean circulation and regional atmospheric moisture transport, influenced by the emerging Maritime Continent. We conclude that the Maritime Continent is the switchboard modulating teleconnections between tropical and high-latitude climate systems.published_or_final_versio

    Expedition 369 methods

    Get PDF
    This chapter documents the procedures and methods used in the shipboard laboratories during International Ocean Discovery Program (IODP) Expedition 369. This introductory section in particular provides a rationale for the site locations and an overview of IODP depth conventions, curatorial procedures, and general core handling/analyses during Expedition 369. Subsequent sections describe specific laboratory procedures and instruments in more detail. This information only applies to shipboard work described in the Proceedings volume; methods used in shore-based analyses of Expedition 369 samples and/or data will be described in various scientific contributions in the open peer-reviewed literature and the Expedition Research Results chapters of this Proceedingsvolume

    Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018) : Change management in allergic rhinitis and asthma multimorbidity using mobile technology

    Get PDF
    Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline by using the best approach to integrated care pathways using mobile technology in patients with allergic rhinitis (AR) and asthma multimorbidity. The proposed next phase of ARIA is change management, with the aim of providing an active and healthy life to patients with rhinitis and to those with asthma multimorbidity across the lifecycle irrespective of their sex or socioeconomic status to reduce health and social inequities incurred by the disease. ARIA has followed the 8-step model of Kotter to assess and implement the effect of rhinitis on asthma multimorbidity and to propose multimorbid guidelines. A second change management strategy is proposed by ARIA Phase 4 to increase self-medication and shared decision making in rhinitis and asthma multimorbidity. An innovation of ARIA has been the development and validation of information technology evidence-based tools (Mobile Airways Sentinel Network [MASK]) that can inform patient decisions on the basis of a self-care plan proposed by the health care professional.Peer reviewe
    corecore