3 research outputs found

    Clinic-based SAMBA-II vs centralized laboratory viral load assays among HIV-1 infected children, adolescents and young adults in rural Zimbabwe: A randomized controlled trial.

    Get PDF
    BACKGROUND In Zimbabwe, children, adolescents and young adults living with HIV (CALWH) who are on public health antiretroviral therapy (ART) have inadequate viral load (VL) suppression. We assessed whether a clinic-based VL monitoring could decrease 12-month virologic failure rates among these CALWH. METHODS The study was registered on ClinicalTrials.gov: NCT03986099. CALWH in care at Chidamoyo Christian Hospital (CCH) and 8 rural outreach sites (ROS) on long-term community-based ART were randomized (1:1) to 6 monthly VL monitoring by COBAS®Ampliprep®/Taqman48® HIV-1 at the provincial referral laboratory (PRL) as per standard of care (SOC) or by the clinic-based SAMBA II assay, Diagnostics for the Real World, at CCH. VL suppression, turn-around-time (TAT) for VL results, drug switching and drug resistance in second-line failure were assessed at 12 months. RESULTS Of 390 CALWH enrolled 347 (89%) completed 12 months follow-up. Median (IQR) age and ART duration were 14.1 (9.7-18.2) and 6.4 (3.7-7.9) years, respectively. Over half (57%) of the participants were female. At enrolment, 78 (20%) had VL ≥1,000 copies/ml and VL suppression of 80% was unchanged after 12 months, with no significant difference between the SOC (81%) and the clinic-based (80%) arms (p = 0.528). Median (IQR) months to confirmatory VL result at CCH vs PRL was 4.0 (2.1-4.4) vs 4.5 (3.5-6.3) respectively; p = 0.027 at 12 months. Drug switching was documented among 26/347 (7%) participants with no difference between the median (IQR) time to switch in SOC vs clinic-based arms (5.1 (3.9-10.0) months vs 4.4 (2.5-8.4) respectively; p = 0.569). Out of 24 confirmed second-line failures, only 4/19 (21%) had protease inhibitor resistance. CONCLUSION In rural Zimbabwe, the clinic-based SAMBA II assay was able to provide confirmatory VL results faster than the SOC VL assay at the PRL. However, this rapid TAT did not allow for a more efficient drug switch among these CALWH

    Viral load care of HIV-1 infected children and adolescents: A longitudinal study in rural Zimbabwe.

    Get PDF
    INTRODUCTION Maintaining virologic suppression of children and adolescents on ART in rural communities in sub-Saharan Africa is challenging. We explored switching drug regimens to protease inhibitor (PI) based treatment and reducing nevirapine and zidovudine use in a differentiated community service delivery model in rural Zimbabwe. METHODS From 2016 through 2018, we followed 306 children and adolescents on ART in Hurungwe, Zimbabwe at Chidamoyo Christian Hospital, which provides compact ART regimens at 8 dispersed rural community outreach sites. Viral load testing was performed (2016) by Roche and at follow-up (2018) by a point of care viral load assay. Virologic failure was defined as viral load ≥1,000 copies/ml. A logistic regression model which included demographics, treatment regimens and caregiver's characteristics was used to assess risks for virologic failure and loss to follow-up (LTFU). RESULTS At baseline in 2016, 296 of 306 children and adolescents (97%) were on first-line ART, and only 10 were receiving a PI-based regimen. The median age was 12 years (IQR 8-15) and 55% were female. Two hundred and nine (68%) had viral load suppression (<1,000 copies/ml) and 97(32%) were unsuppressed (viral load ≥1000). At follow-up in 2018, 42/306 (14%) were either transferred 23 (7%) or LTFU 17 (6%) and 2 had died. In 2018, of the 264 retained in care, 107/264 (41%), had been switched to second-line, ritonavir-boosted PI with abacavir as a new nucleotide analog reverse transcriptase inhibitor (NRTI). Overall viral load suppression increased from 68% in 2016 to 81% in 2018 (P<0.001). CONCLUSION Viral load testing, and switching to second-line, ritonavir-boosted PI with abacavir significantly increased virologic suppression among HIV-infected children and adolescents in rural Zimbabwe

    The diarylquinoline TMC207 for multidrug-resistant tuberculosis

    No full text
    BACKGROUND: The diarylquinoline TMC207 offers a new mechanism of antituberculosis action by inhibiting mycobacterial ATP synthase. TMC207 potently inhibits drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and shows bactericidal activity in patients who have drug-susceptible pulmonary tuberculosis. METHODS: In the first stage of a two-stage, phase 2, randomized, controlled trial, we randomly assigned 47 patients who had newly diagnosed multidrug-resistant pulmonary tuberculosis to receive either TMC207 (400 mg daily for 2 weeks, followed by 200 mg three times a week for 6 weeks) (23 patients) or placebo (24 patients) in combination with a standard five-drug, second-line antituberculosis regimen. The primary efficacy end point was the conversion of sputum cultures, in liquid broth, from positive to negative. RESULTS: The addition of TMC207 to standard therapy for multidrug-resistant tuberculosis reduced the time to conversion to a negative sputum culture, as compared with placebo (hazard ratio, 11.8; 95% confidence interval, 2.3 to 61.3; P=0.003 by Cox regression analysis) and increased the proportion of patients with conversion of sputum culture (48% vs. 9%). The mean log(10) count of colony-forming units in the sputum declined more rapidly in the TMC207 group than in the placebo group. No significant differences in average plasma TMC207 concentrations were noted between patients with and those without culture conversion. Most adverse events were mild to moderate, and only nausea occurred significantly more frequently among patients in the TMC207 group than among patients in the placebo group (26% vs. 4%, P=0.04). CONCLUSIONS: The clinical activity of TMC207 validates ATP synthase as a viable target for the treatment of tuberculosis. (ClinicalTrials.gov number, NCT00449644.
    corecore