60 research outputs found
A DC Programming Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique
This paper continues our effort initiated in [9] to study Multicast
Communication Networks, modeled as bilevel hierarchical clustering problems, by
using mathematical optimization techniques. Given a finite number of nodes, we
consider two different models of multicast networks by identifying a certain
number of nodes as cluster centers, and at the same time, locating a particular
node that serves as a total center so as to minimize the total transportation
cost through the network. The fact that the cluster centers and the total
center have to be among the given nodes makes this problem a discrete
optimization problem. Our approach is to reformulate the discrete problem as a
continuous one and to apply Nesterov smoothing approximation technique on the
Minkowski gauges that are used as distance measures. This approach enables us
to propose two implementable DCA-based algorithms for solving the problems.
Numerical results and practical applications are provided to illustrate our
approach
Optimal dynamic portfolio selection with earnings-at-risk
In this paper we investigate a continuous-time portfolio selection problem. Instead of using the classical variance as usual, we use earnings-at-risk (EaR) of terminal wealth as a measure of risk. In the settings of Black-Scholes type financial markets and constantly-rebalanced portfolio (CRP) investment strategies, we obtain closed-form expressions for the best CRP investment strategy and the efficient frontier of the mean-EaR problem, and compare our mean-EaR analysis to the classical mean-variance analysis and to the mean-CaR (capital-at-risk) analysis. We also examine some economic implications arising from using the mean-EaR model. © 2007 Springer Science+Business Media, LLC.postprin
Influence of the Time Scale on the Construction of Financial Networks
BACKGROUND: In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. METHODOLOGY/PRINCIPAL FINDINGS: For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. CONCLUSIONS/SIGNIFICANCE: Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis
Exploring Statistical and Population Aspects of Network Complexity
The characterization and the definition of the complexity of objects is an important but very difficult problem that attracted much interest in many different fields. In this paper we introduce a new measure, called network diversity score (NDS), which allows us to quantify structural properties of networks. We demonstrate numerically that our diversity score is capable of distinguishing ordered, random and complex networks from each other and, hence, allowing us to categorize networks with respect to their structural complexity. We study 16 additional network complexity measures and find that none of these measures has similar good categorization capabilities. In contrast to many other measures suggested so far aiming for a characterization of the structural complexity of networks, our score is different for a variety of reasons. First, our score is multiplicatively composed of four individual scores, each assessing different structural properties of a network. That means our composite score reflects the structural diversity of a network. Second, our score is defined for a population of networks instead of individual networks. We will show that this removes an unwanted ambiguity, inherently present in measures that are based on single networks. In order to apply our measure practically, we provide a statistical estimator for the diversity score, which is based on a finite number of samples
On Maximum Weight Clique Algorithms, and How They Are Evaluated
Maximum weight clique and maximum weight independent set solvers are often benchmarked using maximum clique problem instances, with weights allocated to vertices by taking the vertex number mod 200 plus 1. For constraint programming approaches, this rule has clear implications, favouring weight-based rather than degree-based heuristics. We show that similar implications hold for dedicated algorithms, and that additionally, weight distributions affect whether certain inference rules are cost-effective. We look at other families of benchmark instances for the maximum weight clique problem, coming from winner determination problems, graph colouring, and error-correcting codes, and introduce two new families of instances, based upon kidney exchange and the Research Excellence Framework. In each case the weights carry much more interesting structure, and do not in any way resemble the 200 rule. We make these instances available in the hopes of improving the quality of future experiments
A DC Programming Approach for Solving Multicast Network Design Problems via the Nesterov Smoothing Technique
This paper continues our effort initiated in [19] to study Multicast Communication Networks, modeled as bilevel hierarchical clustering problems, by using mathematical optimization techniques. Given a finite number of nodes, we consider two different models of multicast networks by identifying a certain number of nodes as cluster centers, and at the same time, locating a particular node that serves as a total center so as to minimize the total transportation cost through the network. The fact that the cluster centers and the total center have to be among the given nodes makes this problem a discrete optimization problem. Our approach is to reformulate the discrete problem as a continuous one and to apply Nesterov smoothing approximation technique on the Minkowski gauges that are used as distance measures. This approach enables us to propose two implementable DCA-based algorithms for solving the problems. Numerical results and practical applications are provided to illustrate our approach
- …