3,695 research outputs found

    Grassmannians Gr(N-1,N+1), closed differential N-1 forms and N-dimensional integrable systems

    Full text link
    Integrable flows on the Grassmannians Gr(N-1,N+1) are defined by the requirement of closedness of the differential N-1 forms ΩN−1\Omega_{N-1} of rank N-1 naturally associated with Gr(N-1,N+1). Gauge-invariant parts of these flows, given by the systems of the N-1 quasi-linear differential equations, describe coisotropic deformations of (N-1)-dimensional linear subspaces. For the class of solutions which are Laurent polynomials in one variable these systems coincide with N-dimensional integrable systems such as Liouville equation (N=2), dispersionless Kadomtsev-Petviashvili equation (N=3), dispersionless Toda equation (N=3), Plebanski second heavenly equation (N=4) and others. Gauge invariant part of the forms ΩN−1\Omega_{N-1} provides us with the compact form of the corresponding hierarchies. Dual quasi-linear systems associated with the projectively dual Grassmannians Gr(2,N+1) are defined via the requirement of the closedness of the dual forms ΩN−1⋆\Omega_{N-1}^{\star}. It is shown that at N=3 the self-dual quasi-linear system, which is associated with the harmonic (closed and co-closed) form Ω2\Omega_{2}, coincides with the Maxwell equations for orthogonal electric and magnetic fields.Comment: 26 pages, references adde

    Spin-flop transition in uniaxial antiferromagnets: magnetic phases, reorientation effects, multidomain states

    Full text link
    The classical spin-flop is the field-driven first-order reorientation transition in easy-axis antiferromagnets. A comprehensive phenomenological theory of easy-axis antiferromagnets displaying spin-flops is developed. It is shown how the hierarchy of magnetic coupling strengths in these antiferromagnets causes a strongly pronounced two-scale character in their magnetic phase structure. In contrast to the major part of the magnetic phase diagram, these antiferromagnets near the spin-flop region are described by an effective model akin to uniaxial ferromagnets. For a consistent theoretical description both higher-order anisotropy contributions and dipolar stray-fields have to be taken into account near the spin-flop. In particular, thermodynamically stable multidomain states exist in the spin-flop region, owing to the phase coexistence at this first-order transition. For this region, equilibrium spin-configurations and parameters of the multidomain states are derived as functions of the external magnetic field. The components of the magnetic susceptibility tensor are calculated for homogeneous and multidomain states in the vicinity of the spin-flop. The remarkable anomalies in these measurable quantities provide an efficient method to investigate magnetic states and to determine materials parameters in bulk and confined antiferromagnets, as well as in nanoscale synthetic antiferromagnets. The method is demonstrated for experimental data on the magnetic properties near the spin-flop region in the orthorhombic layered antiferromagnet (C_2H_5NH_3)_2CuCl_4.Comment: (15 pages, 12 figures; 2nd version: improved notation and figures, correction of various typos

    On the heavenly equation hierarchy and its reductions

    Full text link
    Second heavenly equation hierarchy is considered using the framework of hyper-K\"ahler hierarchy developed by Takasaki. Generating equations for the hierarchy are introduced, they are used to construct generating equations for reduced hierarchies. General NN-reductions, logarithmic reduction and rational reduction for one of the Lax-Sato functions are discussed. It is demonstrated that rational reduction is equivalent to the symmetry constraint.Comment: 13 pages, LaTeX, minor misprints corrected, references adde
    • …
    corecore