4,153 research outputs found

    Internal Time Peculiarities as a Cause of Bifurcations Arising in Classical Trajectory Problem and Quantum Chaos Creation in Three-Body System

    Full text link
    A new formulation of the theory of quantum mechanical multichannel scattering for three-body collinear systems is proposed. It is shown, that in this simple case the principle of quantum determinism in the general case breaks down and we have a micro-irreversible quantum mechanics. The first principle calculations of the quantum chaos (wave chaos) were pursued on the example of an elementary chemical reaction Li+(FH)->(LiFH)*->(LiF)+H.Comment: 7 pages, 3 figures, accepted for publication in Int. J. of Bifurcation & Chao

    Grassmannians Gr(N-1,N+1), closed differential N-1 forms and N-dimensional integrable systems

    Full text link
    Integrable flows on the Grassmannians Gr(N-1,N+1) are defined by the requirement of closedness of the differential N-1 forms ΩN1\Omega_{N-1} of rank N-1 naturally associated with Gr(N-1,N+1). Gauge-invariant parts of these flows, given by the systems of the N-1 quasi-linear differential equations, describe coisotropic deformations of (N-1)-dimensional linear subspaces. For the class of solutions which are Laurent polynomials in one variable these systems coincide with N-dimensional integrable systems such as Liouville equation (N=2), dispersionless Kadomtsev-Petviashvili equation (N=3), dispersionless Toda equation (N=3), Plebanski second heavenly equation (N=4) and others. Gauge invariant part of the forms ΩN1\Omega_{N-1} provides us with the compact form of the corresponding hierarchies. Dual quasi-linear systems associated with the projectively dual Grassmannians Gr(2,N+1) are defined via the requirement of the closedness of the dual forms ΩN1\Omega_{N-1}^{\star}. It is shown that at N=3 the self-dual quasi-linear system, which is associated with the harmonic (closed and co-closed) form Ω2\Omega_{2}, coincides with the Maxwell equations for orthogonal electric and magnetic fields.Comment: 26 pages, references adde

    On the heavenly equation hierarchy and its reductions

    Full text link
    Second heavenly equation hierarchy is considered using the framework of hyper-K\"ahler hierarchy developed by Takasaki. Generating equations for the hierarchy are introduced, they are used to construct generating equations for reduced hierarchies. General NN-reductions, logarithmic reduction and rational reduction for one of the Lax-Sato functions are discussed. It is demonstrated that rational reduction is equivalent to the symmetry constraint.Comment: 13 pages, LaTeX, minor misprints corrected, references adde

    Chiral Skyrmionic matter in non-centrosymmetric magnets

    Full text link
    Axisymmetric magnetic strings with a fixed sense of rotation and nanometer sizes (chiral magnetic vortices or Skyrmions) have been predicted to exist in a large group of non-centrosymmetric crystals more than two decades ago. Recently these extraordinary magnetic states have been directly observed in thin layers of cubic helimagnet (Fe,Co)Si. In this report we apply our earlier theoretical findings to review main properties of chiral Skyrmions, to elucidate their physical nature, and to analyse these recent experimental results on magnetic-field-driven evolution of Skyrmions and helicoids in chiral helimagnets.Comment: 13 pages, 7 figures, invited talk - JEMS-2010 ( 23-28 August, Krakow, Poland

    Lattice and q-difference Darboux-Zakharov-Manakov systems via ˉ\bar{\partial}-dressing method

    Full text link
    A general scheme is proposed for introduction of lattice and q-difference variables to integrable hierarchies in frame of ˉ\bar{\partial}-dressing method . Using this scheme, lattice and q-difference Darboux-Zakharov-Manakov systems of equations are derived. Darboux, B\"acklund and Combescure transformations and exact solutions for these systems are studied.Comment: 8 pages, LaTeX, to be published in J Phys A, Letters

    New Perturbation Theory for Nonstationary Anharmonic Oscillator

    Full text link
    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type V(x,τ)=α(τ)x3+β(τ)x4.V(x,\tau)=\alpha (\tau)x^3+\beta (\tau)x^4. The transition amplitude ''ground state - ground state'' W00(λ;ρ)W_{00}(\lambda ;\rho) is analyzed in detail depending on perturbation parameter λ\lambda (including strong coupling region % \lambda 1\sim 1) and one-dimensional refraction coefficient ρ\rho .Comment: LaTeX, 13 page

    Statistical Estimation of Quantum Tomography Protocols Quality

    Full text link
    A novel operational method for estimating the efficiency of quantum state tomography protocols is suggested. It is based on a-priori estimation of the quality of an arbitrary protocol by means of universal asymptotic fidelity distribution and condition number, which takes minimal value for better protocol. We prove the adequacy of the method both with numerical modeling and through the experimental realization of several practically important protocols of quantum state tomography

    Intermediate phase in the spiral antiferromagnet Ba_2CuGe_2O_7

    Full text link
    The magnetic compound Ba_2CuGe_2O_7 has recently been shown to be an essentially two-dimensional spiral antiferromagnet that exhibits an incommensurate-to-commensurate phase transition when a magnetic field applied along the c-axis exceeds a certain critical value H_c. The T=0 dynamics is described here in terms of a continuum field theory in the form of a nonlinear sigma model. We are thus in a position to carry out a complete calculation of the low-energy magnon spectrum for any strength of the applied field throughout the phase transition. In particular, our spin-wave analysis reveals field-induced instabilities at two distinct critical fields H_1 and H_2 such that H_1 < H_c < H_2. Hence we predict the existence of an intermediate phase whose detailed nature is also studied to some extent in the present paper.Comment: 15 pages, 11 figures, 2 table
    corecore