10 research outputs found

    Brane Cosmology with a Non-Minimally Coupled Bulk-Scalar Field

    Get PDF
    We consider the cosmological evolution of a brane in the presence of a bulk scalar field coupled to the Ricci scalar through a term f(\phi)R. We derive the generalized Friedmann equation on the brane in the presence of arbitrary brane and bulk-matter, as well as the scalar field equation, allowing for a general scalar potential V(phi). We focus on a quadratic form of the above non-minimal coupling and obtain a class of late-time solutions for the scale factor and the scalar field on the brane that exhibit accelerated expansion for a range of the non-minimal coupling parameter.Comment: 15 page

    Synergistic Gravity and the Role of Resonances in GRS-Inspired Braneworlds

    Full text link
    We consider 5D braneworld models of quasi-localized gravity in which 4D gravity is reproduced at intermediate scales while the extra dimension opens up at both the very short and the very long distances, where the geometry is flat. Our main interest is the interplay between the zero mode of these models, whenever a normalizable zero mode exists, and the effects of zero energy graviton resonant modes coming from the contributions of massive KK modes. We first consider a compactified version of the GRS model and find that quasi-localized gravity is characterized by a scale for which both the resonance and the zero mode have significant contribution to 4D gravity. Above this scale, gravity is primarily mediated by the zero mode, while the resonance gives only minor corrections. Next, we consider an asymmetric version of the standard non-compact GRS model, characterized by different cosmological constants on each AdS side. We show that a resonance is present but the asymmetry, through the form of the localizing potential, can weaken it, resulting in a shorter lifetime and, thus, in a shorter distance scale for 4D gravity. As a third model exhibiting quasi-localization, we consider a version of the GRS model in which the central positive tension brane has been replaced by a configuration of a scalar field propagating in the bulk.Comment: 18 pages, 3 figures, added 1 figure, revised version as published in Class. Quant. Gra

    DGP Cosmology with a Non-Minimally Coupled Scalar Field on the Brane

    Full text link
    We construct a DGP inspired braneworld scenario where a scalar field non-minimally coupled to the induced Ricci curvature is present on the brane. First we investigate the status of gravitational potential with non-minimal coupling and observational constraints on this non-minimal model. Then we further deepen the idea of embedding of FRW cosmology in this non-minimal setup. Cosmological implications of this scenario are examined with details and the quintessence and late-time expansion of the universe within this framework are examined. Some observational constraints imposed on this non-minimal scenario are studied and relation of this model with dark radiation formalism is determined with details.Comment: 26 pages, 3 eps figure

    Reconstruction of the Scalar-Tensor Lagrangian from a LCDM Background and Noether Symmetry

    Full text link
    We consider scalar-tensor theories and reconstruct their potential U(\Phi) and coupling F(\Phi) by demanding a background LCDM cosmology. In particular we impose a background cosmic history H(z) provided by the usual flat LCDM parameterization through the radiation (w_{eff}=1/3), matter (w_{eff}=0) and deSitter (w_{eff}=-1) eras. The cosmological dynamical system which is constrained to obey the LCDM cosmic history presents five critical points in each era, one of which corresponding to the standard General Relativity (GR). In the cases that differ from GR, the reconstructed coupling and potential are of the form F(\Phi)\sim \Phi^2 and U(\Phi)\sim F(\Phi)^m where m is a constant. This class of scalar tensor theories is also theoretically motivated by a completely independent approach: imposing maximal Noether symmetry on the scalar-tensor Lagrangian. This approach provides independently: i) the form of the coupling and the potential as F(\Phi)\sim \Phi^2 and U(\Phi)\sim F(\Phi)^m, ii) a conserved charge related to the potential and the coupling and iii) allows the derivation of exact solutions by first integrals of motion.Comment: Added comments, discussion, references. 15 revtex pages, 5 fugure

    Dark energy from bulk matter

    No full text
    corecore