4 research outputs found

    Resonance Raman Spectroscopy of Mn-Mg<i><sub>k</sub></i> Cation Complexes in GaN

    No full text
    Resonance Raman analysis is performed in order to gain insight into the nature of impurity-induced Raman features in GaN:(Mn,Mg) hosting Mn-Mgk cation complexes and representing a prospective strategic material for the realization of full-nitride photonic devices emitting in the infra-red. It is found that in contrast to the case of GaN:Mn, the resonance enhancement of Mn-induced modes at sub-band excitation in Mg co-doped samples is not observed at an excitation of 2.4 eV, but shifts to lower energies, an effect explained by a resonance process involving photoionization of a hole from the donor level of Mn to the valence band of GaN. Selective excitation within the resonance Raman conditions allows the structure of the main Mn-induced phonon band at ~670 cm&#8722;1 to be resolved into two distinct components, whose relative intensity varies with the Mg/Mn ratio and correlates with the concentration of different Mn-Mgk cation complexes. Moreover, from the relative intensity of the 2LO and 1LO Raman resonances at inter-band excitation energy, the Huang-Rhys parameter has been estimated and, consequently, the strength of the electron-phonon interaction, which is found to increase linearly with the Mg/Mn ratio. Selective temperature-dependent enhancement of the high-order multiphonon peaks is due to variation in resonance conditions of exciton-mediated outgoing resonance Raman scattering by detuning the band gap

    Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire

    No full text
    Abstract Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n+/n0/n+-GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range. It is shown that the modeling of IR reflectance spectrum using 2 × 2 transfer matrix method and including into analysis the additional layer make it possible to obtain the best fitting of the experimental spectrum, which follows in the evaluation of GaN layer thicknesses which are in good agreement with the SEM and SIMS data. Spectral dependence of plasmon-LO-phonon coupled modes for each GaN layer is obtained from the spectral dependence of dielectric of Si doping impurity, which is attributed to compensation effects by the acceptor states
    corecore