2 research outputs found

    A Serious Gaming Approach for Crowdsensing in Urban Water Infrastructure with Blockchain Support

    No full text
    This paper presents the current state of the gaming industry, which provides an important background for an effective serious game implementation in mobile crowdsensing. An overview of existing solutions, scientific studies and market research highlights the current trends and the potential applications for citizen-centric platforms in the context of Cyber–Physical–Social systems. The proposed solution focuses on serious games applied in urban water management from the perspective of mobile crowdsensing, with a reward-driven mechanism defined for the crowdsensing tasks. The serious game is designed to provide entertainment value by means of gamified interaction with the environment, while the crowdsensing component involves a set of roles for finding, solving and validating water-related issues. The mathematical model of distance-constrained multi-depot vehicle routing problem with heterogeneous fleet capacity is evaluated in the context of the proposed scenario, with random initial conditions given by the location of players, while the Vickrey–Clarke–Groves auction model provides an alternative to the centralized task allocation strategy, subject to the same evaluation method. A blockchain component based on the Hyperledger Fabric architecture provides the level of trust required for achieving overall platform utility for different stakeholders in mobile crowdsensing

    Advanced Strategies for Monitoring Water Consumption Patterns in Households Based on IoT and Machine Learning

    No full text
    Water resource management represents a fundamental aspect of a modern society. Urban areas present multiple challenges requiring complex solutions, which include multidomain approaches related to the integration of advanced technologies. Water consumption monitoring applications play a significant role in increasing awareness, while machine learning has been proven for the design of intelligent solutions in this field. This paper presents an approach for monitoring and predicting water consumption from the most important water outlets in a household based on a proposed IoT solution. Data processing pipelines were defined, including K-means clustering and evaluation metrics, extracting consumption events, and training classification methods for predicting consumption sources. Continuous water consumption monitoring offers multiple benefits toward improving decision support by combining modern processing techniques, algorithms, and methods
    corecore