4,778 research outputs found
Pseudoscalar Meson Electroproduction Above the Resonance Region
One principal motivation for studying exclusive reactions is that they
provide a new class of observables, called off-diagonal parton distributions,
for the internal structure of the nucleon. The study of exclusive reactions
provides a probe of nucleon structure complementary to purely inclusive
studies. The simplest, and possibly the most promising, type of experiment is
exclusive electroproduction of pseudoscalar mesons at small t, and at large Q2
and W.
We show that using the CLAS spectrometer at JLAB and with beam energies
between 4 and 6 GeV, we can obtain good quality electroproduction data that
will improve our understanding of nucleon structure.Comment: LaTex, 12 pages with 2 Postscript figure
Application of functional analysis to perturbation theory of differential equations
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point
Three-dimensional magnetostatic models of the large-scale corona
A special class of magnetostatic equilibria is described, which are mathematically simple and yet sufficiently versatile so as to fit any arbitrary normal magnetic flux prescribed at the photosphere. With these solutions, the corona can be modeled with precisely the same mathematically simple procedure as has previously been done with potential fields. The magnetostatic model predicts, in addition to the coronal magnetic field, the three dimensional coronal density which can be compared with coronagraph observations
Note on Invariants of the Weyl Tensor
Algebraically special gravitational fields are described using algebraic and
differential invariants of the Weyl tensor. A type III invariant is also given
and calculated for Robinson-Trautman spaces.Comment: 3 pages, no figures, corrected expression (12
Upper limits on the luminosity of the progenitor of type Ia supernova SN2014J
We analysed archival data of Chandra pre-explosion observations of the
position of SN2014J in M82. No X-ray source at this position was detected in
the data, and we calculated upper limits on the luminosities of the progenitor.
These upper limits allow us to firmly rule out an unobscured supersoft X-ray
source progenitor with a photospheric radius comparable to the radius of white
dwarf near the Chandrasekhar mass (~1.38 M_sun) and mass accretion rate in the
interval where stable nuclear burning can occur. However, due to a relatively
large hydrogen column density implied by optical observations of the supernova,
we cannot exclude a supersoft source with lower temperatures, kT < 80 eV. We
find that the supernova is located in the centre of a large structure of soft
diffuse emission, about 200 pc across. The mass, ~3x10^4 M_sun and short
cooling time of the gas, tau_cool ~ 8 Myrs, suggest that it is a
supernova-inflated super-bubble, associated with the region of recent star
formation. If SN2014J is indeed located inside the bubble, it likely belongs to
the prompt population of type Ia supernovae, with a delay time as short as ~ 50
Myrs. Finally, we analysed the one existing post-supernova Chandra observation
and placed upper limit of ~ (1-2) 10^37 erg/s on the X-ray luminosity of the
supernova itself.Comment: 8 pages, 6 figure
- …