6 research outputs found

    Exact transformation of a Langevin equation to a fluctuating response equation

    Full text link
    We demonstrate that a Langevin equation that describes the motion of a Brownian particle under non-equilibrium conditions can be exactly transformed to a special equation that explicitly exhibits the response of the velocity to a time dependent perturbation. This transformation is constructed on the basis of an operator formulation originally used in nonlinear perturbation theory for differential equations by extending it to stochastic analysis. We find that the obtained expression is useful for the calculation of fundamental quantities of the system, and that it provides a physical basis for the decomposition of the forces in the Langevin description into effective driving, dissipative, and random forces in a large-scale description.Comment: 14 pages, to appear in J. Phys. A: Math. Ge

    Slow light in photonic crystals

    Full text link
    The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electromagnetic waves in photonic crystals is quite obvious and well known. The main problem, though, has been how to convert the input radiation into the slow mode without loosing a significant portion of the incident light energy to absorption, reflection, etc. We show that the so-called frozen mode regime offers a unique solution to the above problem. Under the frozen mode regime, the incident light enters the photonic crystal with little reflection and, subsequently, is completely converted into the frozen mode with huge amplitude and almost zero group velocity. The linearity of the above effect allows to slow light regardless of its intensity. An additional advantage of photonic crystals over other methods of slowing down light is that photonic crystals can preserve both time and space coherence of the input electromagnetic wave.Comment: 96 pages, 12 figure

    Dynamical Reduction of Discrete Systems Based on the Renormalization Group Method

    Full text link
    The renormalization group (RG) method is extended for global asymptotic analysis of discrete systems. We show that the RG equation in the discretized form leads to difference equations corresponding to the Stuart-Landau or Ginzburg-Landau equations. We propose a discretization scheme which leads to a faithful discretization of the reduced dynamics of the original differential equations.Comment: LaTEX. 12pages. 1 figure include

    Algebraic methods in nonlinear perturbation theory

    No full text
    corecore