1,899 research outputs found
Atmospheric pressure glow discharge for CO2 conversion : model-based exploration of the optimum reactor configuration
We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, "confined" configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model
Optomechanical coupling in photonic crystal supported nanomechanical waveguides
We report enhanced optomechanical coupling by embedding a nano-mechanical
beam resonator within an optical race-track resonator. Precise control of the
mechanical resonator is achieved by clamping the beam between two low-loss
photonic crystal waveguide couplers. The low insertion loss and the rigid
mechanical support provided by the couplers yield both high mechanical and
optical Q-factors for improved signal quality
Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance
We show that nano-mechanical interaction using atomic force microscopy (AFM) can be used to map out mode-patterns of an optical micro-resonator with high spatial accuracy. Furthermore we demonstrate how the Q-factor and center wavelength of such resonances can be sensitively modified by both horizontal and vertical displacement of an AFM tip consisting of either Si3N4 or Si material. With a silicon tip we are able to tune the resonance wavelength by 2.3 nm, and to set Q between values of 615 and zero, by expedient positioning of the AFM tip. We find full on/off switching for less than 100 nm vertical, and for 500 nm lateral\ud
displacement at the strongest resonance antinode locations
Interactions with a photonic crystal micro-cavity using AFM in contact or tapping mode operation
In this paper we show how the evanescent field of a localized mode in a photonic crystal micro-cavity can be perturbed by a nano-sized AFM tip. Due to the high field intensities in the cavity, we can see a significant change in output power when the tip is brought into the evanescent field in either contact or tapping mode operation. We find a 4 dB modulation, when using a tip and we show that the transmittance can be tuned from 0.32 to 0.8 by varying the average tapping height
Monte Carlo Approaches to Parameterized Poker Squares
The paper summarized a variety of Monte Carlo approaches employed in the top three performing entries to the Parameterized Poker Squares NSG Challenge competition. In all cases AI players benefited from real-time machine learning and various Monte Carlo game-tree search techniques
DAC-Less amplifier-less generation and transmission of QAM signals using sub-volt silicon-organic hybrid modulators
We demonstrate generation and transmission of optical signals by directly interfacing highly efficient silicon-organic hybrid (SOH) modulators to binary output ports of a field-programmable gate array. Using an SOH Mach-Zehnder modulator (MZM) and an SOH IQ modulator we generate ON-OFF- keying and binary phase-shift keying signals as well as quadrature phase-shift keying and 16-state quadrature amplitude modulation (16QAM) formats. Peak-to-peak voltages amount to only 0.27 V-pp for driving the MZM and 0.41 V-pp for the IQ modulator. Neither digital-to-analog converters nor drive amplifiers are required, and the RF energy consumption in the modulator amounts to record-low 18 fJ/bit for 16QAM signaling
Increased susceptibility to proactive interference in adults with dyslexia?
Recent findings show that people with dyslexia have an impairment in serial-order memory. Based on these findings, the present study aimed to test the hypothesis that people with dyslexia have difficulties dealing with proactive interference (PI) in recognition memory. A group of 25 adults with dyslexia and a group of matched controls were subjected to a 2-back recognition task, which required participants to indicate whether an item (mis)matched the item that had been presented 2 trials before. PI was elicited using lure trials in which the item matched the item in the 3-back position instead of the targeted 2-back position. Our results demonstrate that the introduction of lure trials affected 2-back recognition performance more severely in the dyslexic group than in the control group, suggesting greater difficulty in resisting PI in dyslexia.Peer reviewedFinal Accepted Versio
Ultra-short silicon-organic hybrid (SOH) modulator for bidirectional polarization-independent operation
We propose a bidirectional, polarization-independent, recirculating IQ-modulator scheme based on the silicon-organic hybrid (SOH) platform. We demonstrate the viability of the concept by using an SOH Mach-Zehnder modulator, operated at 10 GBd BPSK and 2ASK-2PSK
- …